Composite dietary antioxidant intake and osteoporosis likelihood in premenopausal and postmenopausal women: a population-based study in the United States

医学 骨质疏松症 四分位数 维生素D与神经学 全国健康与营养检查调查 内科学 生理学 逻辑回归 更年期 维生素 骨矿物 人口 内分泌学 环境卫生 置信区间
作者
Ruyi Zhang,Zemin Ni,Muhong Wei,Yuan Cui,Hao‐Long Zhou,Dongsheng Di,Qi Wang
出处
期刊:Menopause [Ovid Technologies (Wolters Kluwer)]
被引量:6
标识
DOI:10.1097/gme.0000000000002173
摘要

Osteoporosis is a skeletal disease characterized by low bone mass, reduced bone strength, and increased fracture risk. We aimed to investigate the association between combined dietary antioxidant intake and the likelihood of osteoporosis in premenopausal and postmenopausal women, based on data from the National Health and Nutrition Examination Survey.Nutrient intake data were obtained using two 24-hour recalls. Composite dietary antioxidant index (CDAI), which refers to the intake amounts of β-carotene, vitamin A, vitamin C, vitamin E, selenium, zinc, copper, and iron, was then constructed. Prevalent osteoporosis was defined according to bone mineral density T scores of ≤ -2.5 and self-reports. Multiple logistic and Poisson regression models were used for association analyses.A total of 3,418 participants (1,157 premenopausal and 2,261 postmenopausal women) 40 years or older were included, 776 (22.70%) of whom had prevalent osteoporosis. In terms of individual nutrients, postmenopausal women in the highest CDAI quartiles for dietary β-carotene, vitamin A, vitamin C, and iron intakes had a low likelihood of osteoporosis. Regarding the CDAI-osteoporosis association, postmenopausal women in the highest quartile were less likely to have osteoporosis (OR Q3 vs Q1 , 0.64; 95% CI, 0.43-0.96; OR Q4 vs Q1 , 0.56; 95% CI, 0.35-0.89; P for trend = 0.013), after controlling for covariates.CDAI was negatively associated with the likelihood of osteoporosis in postmenopausal women. Our findings suggest that the combined intake of antioxidant nutrients can help reduce the likelihood of osteoporosis in women.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
姜姜发布了新的文献求助10
刚刚
Money完成签到 ,获得积分10
1秒前
2秒前
zhang完成签到,获得积分10
3秒前
bkagyin应助柒柒_BX采纳,获得10
3秒前
心灵美秋灵完成签到,获得积分20
3秒前
科研通AI5应助Drounp采纳,获得10
3秒前
4秒前
4秒前
4秒前
某人金发布了新的文献求助10
5秒前
Hello应助徐biao采纳,获得10
5秒前
神说应助拉长的铅笔采纳,获得10
7秒前
科研通AI5应助Cloud采纳,获得10
7秒前
sam发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
YNHN发布了新的文献求助50
10秒前
qingfeng发布了新的文献求助10
10秒前
11秒前
ding应助张张采纳,获得30
11秒前
11秒前
大模型应助Yue采纳,获得10
11秒前
可爱的函函应助馀翀采纳,获得10
11秒前
搜集达人应助wangrch6采纳,获得10
12秒前
心灵美秋灵关注了科研通微信公众号
12秒前
12秒前
orixero应助casset采纳,获得10
12秒前
13秒前
暴躁的静芙完成签到,获得积分10
13秒前
13秒前
oaoalaa完成签到 ,获得积分10
13秒前
脑洞疼应助欢_211采纳,获得10
13秒前
sam完成签到,获得积分10
14秒前
CodeCraft应助zddhhh采纳,获得10
15秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559313
求助须知:如何正确求助?哪些是违规求助? 3133962
关于积分的说明 9404827
捐赠科研通 2834076
什么是DOI,文献DOI怎么找? 1557790
邀请新用户注册赠送积分活动 727704
科研通“疑难数据库(出版商)”最低求助积分说明 716399