亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PKET-GCN: Prior knowledge enhanced time-varying graph convolution network for traffic flow prediction

计算机科学 图形 卷积(计算机科学) 数据挖掘 控制流程图 相关性 理论计算机科学 模式识别(心理学) 算法 人工智能 数学 人工神经网络 几何学
作者
Yinxin Bao,Jiali Liu,Qinqin Shen,Yang Cao,Weiping Ding,Quan Shi
出处
期刊:Information Sciences [Elsevier]
卷期号:634: 359-381 被引量:38
标识
DOI:10.1016/j.ins.2023.03.093
摘要

Due to prediction on the traffic flow is influenced by the real environment and historical data, the produced traffic graph may include significant uncertainty. The graph convolution operation is widely used in traffic flow prediction with its effective modeling ability on graph structures. However, in this method, it ignores the roles of external factors and historical data from fixed period is used that inevitably will lead to exclusion of detailed dynamic spatial–temporal correlation. To this end, we propose a novel method based on prior knowledge enhanced time-varying graph convolution network (PKET-GCN). First, we characterize factors affecting the traffic flow into dynamic and static features. The dynamic features include data correlation and external interference, while the static features consist of physical distances. Then we design a prior knowledge based module to extract the correlation of nodes and combine it with graph convolution to obtain dynamic spatial features. Next, a time-varying feature extraction module is designed to derive dynamic and long-term temporal features from periodic and adjacent sequences. Finally, the projection module is established to fuse the multiple modules and give the prediction value. The experimental results on five real-world datasets indicate that PKET-GCN is more effective than several existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
shinn发布了新的文献求助10
10秒前
小智完成签到,获得积分10
10秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
小智发布了新的文献求助10
13秒前
耕云钓月发布了新的文献求助10
16秒前
19秒前
22秒前
26秒前
然463完成签到 ,获得积分10
26秒前
27秒前
27秒前
夜夜景发布了新的文献求助10
30秒前
31秒前
美美发布了新的文献求助10
34秒前
李爱国应助shinn采纳,获得10
34秒前
忆修发布了新的文献求助30
37秒前
46秒前
47秒前
47秒前
48秒前
ly发布了新的文献求助10
49秒前
LL完成签到 ,获得积分10
52秒前
shinn发布了新的文献求助10
53秒前
美美完成签到,获得积分10
53秒前
众人皆醉我独醒完成签到,获得积分10
55秒前
55秒前
BowieHuang应助oleskarabach采纳,获得10
1分钟前
1分钟前
patrickli发布了新的文献求助10
1分钟前
Tree_QD完成签到 ,获得积分10
1分钟前
Jasper应助Yikepp采纳,获得10
1分钟前
1分钟前
1分钟前
直率的醉冬完成签到,获得积分10
1分钟前
CipherSage应助shinn采纳,获得10
1分钟前
patrickli完成签到,获得积分10
1分钟前
欢呼宛秋完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772534
求助须知:如何正确求助?哪些是违规求助? 5599698
关于积分的说明 15429759
捐赠科研通 4905497
什么是DOI,文献DOI怎么找? 2639436
邀请新用户注册赠送积分活动 1587360
关于科研通互助平台的介绍 1542247