Development and validation of machine learning-based model for mortality prediction in patients with acute basilar artery occlusion receiving endovascular treatment: multicentric cohort analysis

医学 基底动脉 血管内治疗 队列 内科学 闭塞 外科 动脉瘤
作者
Chang Liu,Jiacheng Huang,Weilin Kong,Liyuan Chen,Jiaxing Song,Jie Yang,Fengli Li,Wenjie Zi
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:16 (1): 53-60 被引量:2
标识
DOI:10.1136/jnis-2023-020080
摘要

Background Predicting mortality in stroke patients using information available before endovascular treatment (EVT) is an essential component for supporting clinical decision-making. Although the mortality rate of acute basilar artery occlusion (ABAO) after EVT has reached 40%, few studies have focused on predicting mortality in these individuals. Thus, we aimed to develop and validate a machine learning-based mortality prediction tool based on preoperative information for ABAO patients receiving EVT. Methods The derivation cohort comprised patients from southern provinces of China in the BASILAR registry. The model (POSITIVE: Predicting mOrtality of baSilar artery occlusion patIents Treated wIth EVT) was trained and optimized using a fivefold cross-validation method in which hyperparameters were selected and fine-tuned. This model was retrospectively tested in patients from the northern provinces of China from the BASILAR registry. A prospective test of POSITIVE was performed on consecutive patients from two hospitals between January 2020 and June 2022. Results Extreme gradient boosting was employed to construct the POSITIVE model, which achieved the best predictive performance among the eight machine learning algorithms and showed excellent discrimination (area under the curve (AUC) 0.83, 95% confidence interval (95% CI) 0.80 to 0.87) and calibration (Hosmer-Lemeshow test, P>0.05) in the development cohort. AUC yielded by the POSITIVE model for the retrospective test was 0.79 (95% CI 0.71 to 0.85), higher than that obtained by traditional models. Prospective comparisons showed that the POSITIVE model achieved the highest AUC (0.82, 95% CI 0.74 to 0.90) among all prediction models. Conclusion We developed a machine learning algorithm and retrospective and prospective testing with multicentric cohorts, which exhibited a solid predictive performance and may act as a convenient reference to guide decision-making for ABAO patients. The POSITIVE model is presented online for user-friendly access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明媚完成签到,获得积分10
刚刚
Mjl完成签到,获得积分10
刚刚
1秒前
1秒前
科研通AI6应助耶耶耶采纳,获得10
1秒前
今后应助八九采纳,获得10
2秒前
王丹丹完成签到,获得积分20
2秒前
香蕉觅松完成签到 ,获得积分20
3秒前
上官若男应助搞怪的青梦采纳,获得10
3秒前
scarlett发布了新的文献求助10
3秒前
haha发布了新的文献求助10
4秒前
4秒前
Li应助Maximuszhao采纳,获得10
4秒前
z荩发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI6应助能干妙竹采纳,获得30
5秒前
Jodie0610发布了新的文献求助10
5秒前
CGGBZLX发布了新的文献求助10
6秒前
yangzhuang发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
鳄鱼天使完成签到,获得积分10
8秒前
Ava应助山下梅子酒采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
czy完成签到,获得积分10
11秒前
朴素山兰发布了新的文献求助10
11秒前
11秒前
明媚发布了新的文献求助10
11秒前
桐桐应助高中生采纳,获得10
11秒前
12秒前
deep发布了新的文献求助10
13秒前
13秒前
scarlett完成签到,获得积分10
13秒前
英吉利25发布了新的文献求助10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341864
求助须知:如何正确求助?哪些是违规求助? 4477955
关于积分的说明 13937502
捐赠科研通 4374208
什么是DOI,文献DOI怎么找? 2403393
邀请新用户注册赠送积分活动 1396165
关于科研通互助平台的介绍 1368165