Development and validation of machine learning-based model for mortality prediction in patients with acute basilar artery occlusion receiving endovascular treatment: multicentric cohort analysis

医学 基底动脉 接收机工作特性 置信区间 队列 前瞻性队列研究 内科学 冲程(发动机) 曲线下面积 闭塞 外科 机械工程 工程类
作者
Chang Liu,Jiacheng Huang,Weilin Kong,Liyuan Chen,Jiaxing Song,Jing Wang,Fengli Li,Wenjie Zi
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:16 (1): 53-60 被引量:2
标识
DOI:10.1136/jnis-2023-020080
摘要

Predicting mortality in stroke patients using information available before endovascular treatment (EVT) is an essential component for supporting clinical decision-making. Although the mortality rate of acute basilar artery occlusion (ABAO) after EVT has reached 40%, few studies have focused on predicting mortality in these individuals. Thus, we aimed to develop and validate a machine learning-based mortality prediction tool based on preoperative information for ABAO patients receiving EVT.The derivation cohort comprised patients from southern provinces of China in the BASILAR registry. The model (POSITIVE: Predicting mOrtality of baSilar artery occlusion patIents Treated wIth EVT) was trained and optimized using a fivefold cross-validation method in which hyperparameters were selected and fine-tuned. This model was retrospectively tested in patients from the northern provinces of China from the BASILAR registry. A prospective test of POSITIVE was performed on consecutive patients from two hospitals between January 2020 and June 2022.Extreme gradient boosting was employed to construct the POSITIVE model, which achieved the best predictive performance among the eight machine learning algorithms and showed excellent discrimination (area under the curve (AUC) 0.83, 95% confidence interval (95% CI) 0.80 to 0.87) and calibration (Hosmer-Lemeshow test, P>0.05) in the development cohort. AUC yielded by the POSITIVE model for the retrospective test was 0.79 (95% CI 0.71 to 0.85), higher than that obtained by traditional models. Prospective comparisons showed that the POSITIVE model achieved the highest AUC (0.82, 95% CI 0.74 to 0.90) among all prediction models.We developed a machine learning algorithm and retrospective and prospective testing with multicentric cohorts, which exhibited a solid predictive performance and may act as a convenient reference to guide decision-making for ABAO patients. The POSITIVE model is presented online for user-friendly access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
温馨完成签到,获得积分10
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
InfoNinja应助科研通管家采纳,获得20
1秒前
今后应助Lazarus_x采纳,获得10
2秒前
谷雨发布了新的文献求助10
4秒前
9秒前
kirirto发布了新的文献求助10
10秒前
komorebi完成签到,获得积分10
11秒前
希勤发布了新的文献求助10
13秒前
不配.应助眉弯采纳,获得10
14秒前
14秒前
16秒前
Yuying发布了新的文献求助10
17秒前
Qsss发布了新的文献求助10
18秒前
Hcollide发布了新的文献求助10
18秒前
21秒前
xuhongbo发布了新的文献求助10
22秒前
Hello应助YI点半的飞机场采纳,获得10
23秒前
张张发布了新的文献求助10
24秒前
25秒前
星辰大海应助unique采纳,获得10
25秒前
今后应助谷雨采纳,获得30
27秒前
27秒前
Akim应助遇见采纳,获得10
28秒前
张张完成签到,获得积分20
30秒前
彭云峰发布了新的文献求助10
30秒前
30秒前
栗子鱼完成签到,获得积分10
31秒前
完美世界应助Cancey采纳,获得10
32秒前
陈颖完成签到,获得积分10
32秒前
所所应助xuhongbo采纳,获得10
33秒前
34秒前
阳光冰颜完成签到,获得积分10
35秒前
36秒前
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825