Development and validation of machine learning-based model for mortality prediction in patients with acute basilar artery occlusion receiving endovascular treatment: multicentric cohort analysis

医学 基底动脉 血管内治疗 队列 内科学 闭塞 外科 动脉瘤
作者
Chang Liu,Jiacheng Huang,Weilin Kong,Liyuan Chen,Jiaxing Song,Jie Yang,Fengli Li,Wenjie Zi
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:16 (1): 53-60 被引量:2
标识
DOI:10.1136/jnis-2023-020080
摘要

Background Predicting mortality in stroke patients using information available before endovascular treatment (EVT) is an essential component for supporting clinical decision-making. Although the mortality rate of acute basilar artery occlusion (ABAO) after EVT has reached 40%, few studies have focused on predicting mortality in these individuals. Thus, we aimed to develop and validate a machine learning-based mortality prediction tool based on preoperative information for ABAO patients receiving EVT. Methods The derivation cohort comprised patients from southern provinces of China in the BASILAR registry. The model (POSITIVE: Predicting mOrtality of baSilar artery occlusion patIents Treated wIth EVT) was trained and optimized using a fivefold cross-validation method in which hyperparameters were selected and fine-tuned. This model was retrospectively tested in patients from the northern provinces of China from the BASILAR registry. A prospective test of POSITIVE was performed on consecutive patients from two hospitals between January 2020 and June 2022. Results Extreme gradient boosting was employed to construct the POSITIVE model, which achieved the best predictive performance among the eight machine learning algorithms and showed excellent discrimination (area under the curve (AUC) 0.83, 95% confidence interval (95% CI) 0.80 to 0.87) and calibration (Hosmer-Lemeshow test, P>0.05) in the development cohort. AUC yielded by the POSITIVE model for the retrospective test was 0.79 (95% CI 0.71 to 0.85), higher than that obtained by traditional models. Prospective comparisons showed that the POSITIVE model achieved the highest AUC (0.82, 95% CI 0.74 to 0.90) among all prediction models. Conclusion We developed a machine learning algorithm and retrospective and prospective testing with multicentric cohorts, which exhibited a solid predictive performance and may act as a convenient reference to guide decision-making for ABAO patients. The POSITIVE model is presented online for user-friendly access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MengYuan发布了新的文献求助10
刚刚
hoongyan完成签到 ,获得积分10
1秒前
香蕉觅云应助AAOL采纳,获得50
2秒前
小杜完成签到,获得积分20
2秒前
英姑应助雇凶暗杀蛋饺采纳,获得10
2秒前
3秒前
周伟杰发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
雪白的冰珍完成签到,获得积分10
6秒前
可爱的函函应助书记采纳,获得10
6秒前
昏睡的以寒完成签到,获得积分10
7秒前
凉雨渲发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
JerryZ发布了新的文献求助10
10秒前
雇凶暗杀蛋饺完成签到,获得积分10
12秒前
12秒前
Libra发布了新的文献求助10
13秒前
凉雨渲完成签到,获得积分10
14秒前
可爱的函函应助悦悦采纳,获得10
14秒前
周伟杰完成签到,获得积分10
14秒前
情怀应助书记采纳,获得10
19秒前
科研通AI6应助paws采纳,获得10
20秒前
21秒前
柔弱的凝丝关注了科研通微信公众号
22秒前
zky发布了新的文献求助10
22秒前
22秒前
Orange应助kuny采纳,获得10
23秒前
23秒前
浮游应助东山德克士骑士采纳,获得10
24秒前
陈妙莹完成签到,获得积分20
24秒前
招财鱼完成签到 ,获得积分10
25秒前
丘比特应助竹沐鱼采纳,获得10
26秒前
NexusExplorer应助笨小孩采纳,获得10
28秒前
陈妙莹发布了新的文献求助10
28秒前
oiio完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420777
求助须知:如何正确求助?哪些是违规求助? 4535755
关于积分的说明 14151514
捐赠科研通 4452650
什么是DOI,文献DOI怎么找? 2442416
邀请新用户注册赠送积分活动 1433847
关于科研通互助平台的介绍 1410975