清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and validation of machine learning-based model for mortality prediction in patients with acute basilar artery occlusion receiving endovascular treatment: multicentric cohort analysis

医学 基底动脉 血管内治疗 队列 内科学 闭塞 外科 动脉瘤
作者
Chang Liu,Jiacheng Huang,Weilin Kong,Liyuan Chen,Jiaxing Song,Jie Yang,Fengli Li,Wenjie Zi
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:16 (1): 53-60 被引量:2
标识
DOI:10.1136/jnis-2023-020080
摘要

Background Predicting mortality in stroke patients using information available before endovascular treatment (EVT) is an essential component for supporting clinical decision-making. Although the mortality rate of acute basilar artery occlusion (ABAO) after EVT has reached 40%, few studies have focused on predicting mortality in these individuals. Thus, we aimed to develop and validate a machine learning-based mortality prediction tool based on preoperative information for ABAO patients receiving EVT. Methods The derivation cohort comprised patients from southern provinces of China in the BASILAR registry. The model (POSITIVE: Predicting mOrtality of baSilar artery occlusion patIents Treated wIth EVT) was trained and optimized using a fivefold cross-validation method in which hyperparameters were selected and fine-tuned. This model was retrospectively tested in patients from the northern provinces of China from the BASILAR registry. A prospective test of POSITIVE was performed on consecutive patients from two hospitals between January 2020 and June 2022. Results Extreme gradient boosting was employed to construct the POSITIVE model, which achieved the best predictive performance among the eight machine learning algorithms and showed excellent discrimination (area under the curve (AUC) 0.83, 95% confidence interval (95% CI) 0.80 to 0.87) and calibration (Hosmer-Lemeshow test, P>0.05) in the development cohort. AUC yielded by the POSITIVE model for the retrospective test was 0.79 (95% CI 0.71 to 0.85), higher than that obtained by traditional models. Prospective comparisons showed that the POSITIVE model achieved the highest AUC (0.82, 95% CI 0.74 to 0.90) among all prediction models. Conclusion We developed a machine learning algorithm and retrospective and prospective testing with multicentric cohorts, which exhibited a solid predictive performance and may act as a convenient reference to guide decision-making for ABAO patients. The POSITIVE model is presented online for user-friendly access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ilan完成签到,获得积分10
1秒前
7秒前
ceeray23发布了新的文献求助30
26秒前
科目三应助ceeray23采纳,获得20
41秒前
白华苍松发布了新的文献求助20
50秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
Nancy0818完成签到 ,获得积分10
1分钟前
情怀应助白华苍松采纳,获得10
1分钟前
1分钟前
1分钟前
自律发布了新的文献求助10
1分钟前
自律完成签到,获得积分10
1分钟前
2分钟前
2分钟前
白华苍松发布了新的文献求助20
2分钟前
大个应助白华苍松采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
Qvby3完成签到 ,获得积分10
3分钟前
3分钟前
李健的小迷弟应助ceeray23采纳,获得20
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
3分钟前
萝卜猪完成签到,获得积分10
3分钟前
SciGPT应助科研进化中采纳,获得10
3分钟前
我是老大应助zz采纳,获得10
4分钟前
深情安青应助和谐的芷文采纳,获得20
4分钟前
科研通AI2S应助BNN1203381110采纳,获得10
4分钟前
4分钟前
牛先生生完成签到,获得积分10
4分钟前
大胆的碧菡完成签到,获得积分10
4分钟前
冷傲半邪完成签到,获得积分10
4分钟前
紫熊完成签到,获得积分10
4分钟前
Huzhu应助科研通管家采纳,获得10
4分钟前
Jasper应助科研通管家采纳,获得10
4分钟前
Huzhu应助科研通管家采纳,获得30
4分钟前
朱明完成签到 ,获得积分10
5分钟前
在水一方应助金沐栋采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529289
求助须知:如何正确求助?哪些是违规求助? 4618433
关于积分的说明 14562625
捐赠科研通 4557474
什么是DOI,文献DOI怎么找? 2497536
邀请新用户注册赠送积分活动 1477750
关于科研通互助平台的介绍 1449175