Development and validation of machine learning-based model for mortality prediction in patients with acute basilar artery occlusion receiving endovascular treatment: multicentric cohort analysis

医学 基底动脉 血管内治疗 队列 内科学 闭塞 外科 动脉瘤
作者
Chang Liu,Jiacheng Huang,Weilin Kong,Liyuan Chen,Jiaxing Song,Jie Yang,Fengli Li,Wenjie Zi
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:16 (1): 53-60 被引量:2
标识
DOI:10.1136/jnis-2023-020080
摘要

Background Predicting mortality in stroke patients using information available before endovascular treatment (EVT) is an essential component for supporting clinical decision-making. Although the mortality rate of acute basilar artery occlusion (ABAO) after EVT has reached 40%, few studies have focused on predicting mortality in these individuals. Thus, we aimed to develop and validate a machine learning-based mortality prediction tool based on preoperative information for ABAO patients receiving EVT. Methods The derivation cohort comprised patients from southern provinces of China in the BASILAR registry. The model (POSITIVE: Predicting mOrtality of baSilar artery occlusion patIents Treated wIth EVT) was trained and optimized using a fivefold cross-validation method in which hyperparameters were selected and fine-tuned. This model was retrospectively tested in patients from the northern provinces of China from the BASILAR registry. A prospective test of POSITIVE was performed on consecutive patients from two hospitals between January 2020 and June 2022. Results Extreme gradient boosting was employed to construct the POSITIVE model, which achieved the best predictive performance among the eight machine learning algorithms and showed excellent discrimination (area under the curve (AUC) 0.83, 95% confidence interval (95% CI) 0.80 to 0.87) and calibration (Hosmer-Lemeshow test, P>0.05) in the development cohort. AUC yielded by the POSITIVE model for the retrospective test was 0.79 (95% CI 0.71 to 0.85), higher than that obtained by traditional models. Prospective comparisons showed that the POSITIVE model achieved the highest AUC (0.82, 95% CI 0.74 to 0.90) among all prediction models. Conclusion We developed a machine learning algorithm and retrospective and prospective testing with multicentric cohorts, which exhibited a solid predictive performance and may act as a convenient reference to guide decision-making for ABAO patients. The POSITIVE model is presented online for user-friendly access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11_aa发布了新的文献求助10
1秒前
xiaonan_ke发布了新的文献求助10
1秒前
sdfg发布了新的文献求助10
1秒前
小蘑菇应助机灵的嘉熙采纳,获得10
2秒前
jingtanhao发布了新的文献求助10
2秒前
liyanglin发布了新的文献求助30
2秒前
科研通AI6应助周文鑫采纳,获得10
2秒前
hhp发布了新的文献求助10
2秒前
Liang完成签到,获得积分10
2秒前
3秒前
CodeCraft应助锥形瓶采纳,获得10
3秒前
4秒前
5秒前
李爱国应助渴望者采纳,获得10
6秒前
6秒前
CipherSage应助lulu采纳,获得30
6秒前
7秒前
marklee完成签到,获得积分20
7秒前
bkagyin应助haixin采纳,获得10
7秒前
所所应助谢YH采纳,获得10
7秒前
8秒前
复印件完成签到,获得积分10
8秒前
烟花应助jingtanhao采纳,获得10
8秒前
9秒前
xiaonan_ke完成签到,获得积分10
9秒前
彩虹海完成签到,获得积分10
10秒前
xwk发布了新的文献求助20
10秒前
狗屁大侠发布了新的文献求助10
10秒前
11秒前
田様应助天天采纳,获得30
12秒前
蛮吉完成签到,获得积分20
13秒前
不弱小妖完成签到,获得积分10
13秒前
林菲菲发布了新的文献求助10
13秒前
13秒前
UU发布了新的文献求助20
13秒前
量子星尘发布了新的文献求助10
14秒前
TripleY发布了新的文献求助10
14秒前
marklee发布了新的文献求助10
15秒前
李健应助chhe采纳,获得10
16秒前
16秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442878
求助须知:如何正确求助?哪些是违规求助? 4552922
关于积分的说明 14239742
捐赠科研通 4474315
什么是DOI,文献DOI怎么找? 2451988
邀请新用户注册赠送积分活动 1442905
关于科研通互助平台的介绍 1418632