Development and validation of machine learning-based model for mortality prediction in patients with acute basilar artery occlusion receiving endovascular treatment: multicentric cohort analysis

医学 基底动脉 血管内治疗 队列 内科学 闭塞 外科 动脉瘤
作者
Chang Liu,Jiacheng Huang,Weilin Kong,Liyuan Chen,Jiaxing Song,Jie Yang,Fengli Li,Wenjie Zi
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:16 (1): 53-60 被引量:2
标识
DOI:10.1136/jnis-2023-020080
摘要

Background Predicting mortality in stroke patients using information available before endovascular treatment (EVT) is an essential component for supporting clinical decision-making. Although the mortality rate of acute basilar artery occlusion (ABAO) after EVT has reached 40%, few studies have focused on predicting mortality in these individuals. Thus, we aimed to develop and validate a machine learning-based mortality prediction tool based on preoperative information for ABAO patients receiving EVT. Methods The derivation cohort comprised patients from southern provinces of China in the BASILAR registry. The model (POSITIVE: Predicting mOrtality of baSilar artery occlusion patIents Treated wIth EVT) was trained and optimized using a fivefold cross-validation method in which hyperparameters were selected and fine-tuned. This model was retrospectively tested in patients from the northern provinces of China from the BASILAR registry. A prospective test of POSITIVE was performed on consecutive patients from two hospitals between January 2020 and June 2022. Results Extreme gradient boosting was employed to construct the POSITIVE model, which achieved the best predictive performance among the eight machine learning algorithms and showed excellent discrimination (area under the curve (AUC) 0.83, 95% confidence interval (95% CI) 0.80 to 0.87) and calibration (Hosmer-Lemeshow test, P>0.05) in the development cohort. AUC yielded by the POSITIVE model for the retrospective test was 0.79 (95% CI 0.71 to 0.85), higher than that obtained by traditional models. Prospective comparisons showed that the POSITIVE model achieved the highest AUC (0.82, 95% CI 0.74 to 0.90) among all prediction models. Conclusion We developed a machine learning algorithm and retrospective and prospective testing with multicentric cohorts, which exhibited a solid predictive performance and may act as a convenient reference to guide decision-making for ABAO patients. The POSITIVE model is presented online for user-friendly access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助YZMING采纳,获得10
刚刚
1秒前
完美世界应助张浩威采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
大模型应助西风烈长歌啸采纳,获得10
2秒前
ayintree发布了新的文献求助10
3秒前
缪甲烷发布了新的文献求助10
5秒前
科研小白发布了新的文献求助200
5秒前
6秒前
聪明薯片发布了新的文献求助10
6秒前
6秒前
含蓄冷桔完成签到,获得积分10
9秒前
郑z完成签到,获得积分10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
大模型应助ayintree采纳,获得10
12秒前
苏苏苏发布了新的文献求助10
12秒前
FULAWEN发布了新的文献求助10
12秒前
顾矜应助钟情紫色短裤采纳,获得10
12秒前
小绿完成签到,获得积分10
12秒前
liujingjing发布了新的文献求助10
14秒前
FashionBoy应助激昂的逊采纳,获得10
14秒前
14秒前
七月发布了新的文献求助10
14秒前
Marciu33发布了新的文献求助10
15秒前
17秒前
wanci应助Unfair采纳,获得10
19秒前
20秒前
夏奇杨发布了新的文献求助10
20秒前
20秒前
彭于晏应助热心水之采纳,获得10
21秒前
FULAWEN完成签到,获得积分10
21秒前
22秒前
高是个科研狗完成签到 ,获得积分10
22秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449166
求助须知:如何正确求助?哪些是违规求助? 4557377
关于积分的说明 14262889
捐赠科研通 4480184
什么是DOI,文献DOI怎么找? 2454462
邀请新用户注册赠送积分活动 1445097
关于科研通互助平台的介绍 1420965