Inter-structure and intra-semantics graph contrastive learning for disease prediction

计算机科学 自然语言处理 图形 人工智能 语义学(计算机科学) 对比分析 语言学 程序设计语言 理论计算机科学 哲学
作者
Yan Kang,Jingyu Zheng,Mingjian Yang,Ning An
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:300: 112059-112059
标识
DOI:10.1016/j.knosys.2024.112059
摘要

Ever-evolving healthcare applications have witnessed a surge in the utilization of electronic health records (EHR) for predicting future patient diagnoses. While Graph Neural Networks have demonstrated that promise in modeling disease-patient relationships, challenges arise from the sparsity and imbalance of patient and diagnostic data. Moreover, the existing models face difficulties in learning the unique disease combination features of patients. To address these challenges, we proposed a novel disease. prediction architecture based on Contrastive Learning (CL) from interstructural and intrasemantic perspectives, rather than traditional CL methods. We generated an initial global static disease graph to directly represent the relationships. among all diseases and a local dynamic disease graph to capture the indirect latent disease relationships among different patients. Multiple CL tasks were designed to learn sparse and imbalanced potentials. Relationships Between Diseases. Interstructure graph CL was first proposed to sample a graph enhancement, based on the distribution of nodes in the global disease graph. To further explore the deep embedding space of the disease, an intra-view graph CL was introduced by injecting noise at the semantic level for robust graph comparison. Experimental validation on two real EHR datasets demonstrates the superior performance of the approach by comparing it with state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zerotwo完成签到,获得积分10
刚刚
可可豆完成签到,获得积分10
刚刚
刚刚
hanhanhan完成签到,获得积分20
1秒前
保卫时光完成签到,获得积分10
1秒前
1秒前
zcl发布了新的文献求助10
2秒前
2秒前
2秒前
情怀应助唐小颖采纳,获得10
3秒前
赘婿应助啊哦采纳,获得10
3秒前
李健的小迷弟应助zqh采纳,获得10
3秒前
木木川发布了新的文献求助10
3秒前
水博士发布了新的文献求助10
4秒前
研友_VZG7GZ应助糊涂的汽车采纳,获得10
5秒前
一线西风发布了新的文献求助10
5秒前
hanhanhan发布了新的文献求助50
5秒前
AJ发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
kkkhhh发布了新的文献求助10
7秒前
天天快乐应助SEV采纳,获得10
7秒前
悦耳安莲完成签到,获得积分20
7秒前
传奇3应助张123采纳,获得10
7秒前
zgh5615完成签到,获得积分10
7秒前
Taki发布了新的文献求助10
7秒前
星辰大海应助Duxize采纳,获得10
9秒前
9秒前
10秒前
cj发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
13秒前
14秒前
开心夏旋完成签到,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420