Inter-structure and intra-semantics graph contrastive learning for disease prediction

计算机科学 自然语言处理 图形 人工智能 语义学(计算机科学) 对比分析 语言学 程序设计语言 理论计算机科学 哲学
作者
Yan Kang,Jingyu Zheng,Mingjian Yang,Ning An
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:300: 112059-112059
标识
DOI:10.1016/j.knosys.2024.112059
摘要

Ever-evolving healthcare applications have witnessed a surge in the utilization of electronic health records (EHR) for predicting future patient diagnoses. While Graph Neural Networks have demonstrated that promise in modeling disease-patient relationships, challenges arise from the sparsity and imbalance of patient and diagnostic data. Moreover, the existing models face difficulties in learning the unique disease combination features of patients. To address these challenges, we proposed a novel disease. prediction architecture based on Contrastive Learning (CL) from interstructural and intrasemantic perspectives, rather than traditional CL methods. We generated an initial global static disease graph to directly represent the relationships. among all diseases and a local dynamic disease graph to capture the indirect latent disease relationships among different patients. Multiple CL tasks were designed to learn sparse and imbalanced potentials. Relationships Between Diseases. Interstructure graph CL was first proposed to sample a graph enhancement, based on the distribution of nodes in the global disease graph. To further explore the deep embedding space of the disease, an intra-view graph CL was introduced by injecting noise at the semantic level for robust graph comparison. Experimental validation on two real EHR datasets demonstrates the superior performance of the approach by comparing it with state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Soho采纳,获得10
1秒前
1秒前
2秒前
王虎彪完成签到,获得积分20
3秒前
4秒前
达鸟啊发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
Jasperlee完成签到 ,获得积分10
9秒前
风清扬发布了新的文献求助10
9秒前
10秒前
hhhhhhh发布了新的文献求助10
11秒前
12秒前
gugugu完成签到,获得积分10
12秒前
李爱国应助MacD采纳,获得10
14秒前
14秒前
14秒前
研友_n0WgDL发布了新的文献求助10
15秒前
李先生完成签到 ,获得积分10
15秒前
光亮的秋白完成签到 ,获得积分10
15秒前
zmzm完成签到,获得积分20
16秒前
合适怡完成签到,获得积分10
17秒前
zhzhzh发布了新的文献求助10
17秒前
辰昜完成签到,获得积分10
18秒前
隐形曼青应助蔡蔡采纳,获得10
18秒前
huang完成签到,获得积分10
19秒前
19秒前
20秒前
大力可燕发布了新的文献求助10
20秒前
科研通AI2S应助Mia采纳,获得30
20秒前
llll完成签到,获得积分10
20秒前
xunxunmimi完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
猫七发布了新的文献求助10
23秒前
Akim应助等乙天采纳,获得10
24秒前
猫七发布了新的文献求助10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536747
求助须知:如何正确求助?哪些是违规求助? 4624321
关于积分的说明 14591612
捐赠科研通 4564876
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480690
关于科研通互助平台的介绍 1451972