亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinical Text Datasets for Medical Artificial Intelligence and Large Language Models — A Systematic Review

自然语言处理 人工智能 计算机科学
作者
Jiageng Wu,Xiaocong Liu,Minghui Li,Wanxin Li,Zichang Su,Shixu Lin,Lucas Garay,Zhiyun Zhang,Yujie Zhang,Qingcheng Zeng,Jie Shen,Changzheng Yuan,Jie Yang
标识
DOI:10.1056/aira2400012
摘要

Privacy and ethical considerations limit access to large-scale clinical datasets, particularly clinical text data, which contain extensive and diverse information and serve as the foundation for building clinical large language models (LLMs). The limited accessibility of clinical text data impedes the development of clinical artificial intelligence systems and hampers research participation from resource-poor regions and medical institutions, thereby exacerbating health care disparities. In this review, we conduct a global review to identify publicly available clinical text datasets and elaborate on their accessibility, diversity, and usability for clinical LLMs. We screened 3962 papers across medical (PubMed and MEDLINE) and computational linguistic academic databases (the Association for Computational Linguistics Anthology) as well as 239 tasks from prevalent medical natural language processing (NLP) challenges, such as National NLP Clinical Challenges (n2c2). We identified 192 unique clinical text datasets that claimed to be publicly available. Following an institutional review board–approved data-requesting pipeline, access was granted to fewer than half (91 of 192 [47.4%]) of the identified datasets, with an additional 14 (7.3%) datasets being available for regulated access and 87 (45.3%) datasets remaining inaccessible. The publicly available datasets cover nine languages from 14 countries and over 10 million clinical text records, which mostly (88 [95.7%]) originated from the Americas, Europe, and Asia, with none originating from Oceania or Africa, leaving these regions significantly underrepresented. Distribution differences were also evident within the focused clinical context and supported NLP tasks, with intensive care unit (18 [16.8%]), respiratory disease (13 [12.1%]), and cardiovascular disease (11 [10.3%]) gaining significant attention. Named entity recognition (23 [21.7%]), text classification (22 [20.8%]), and event extraction (12 [11.3%]) were the most explored NLP tasks on clinical text datasets. To our knowledge, this is the first systematic review to characterize publicly available clinical text datasets, the foundation of clinical LLMs, highlighting the difficulty in accessibility, underrepresentation across regions and languages, and the challenges posed by the LLMs. Sharing diversified and large-scale clinical text data is necessary, with protection to promote health care research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
河豚完成签到 ,获得积分10
19秒前
早晚完成签到 ,获得积分10
25秒前
52秒前
CipherSage应助Langsam采纳,获得10
1分钟前
顾矜应助吃碗大米饭采纳,获得10
1分钟前
1分钟前
谢小盟完成签到 ,获得积分10
1分钟前
1分钟前
will214发布了新的文献求助10
1分钟前
高贵魂幽完成签到,获得积分10
1分钟前
有魅力寒凡完成签到,获得积分10
1分钟前
初雪平寒发布了新的文献求助10
2分钟前
初雪平寒完成签到,获得积分10
2分钟前
感动的醉波完成签到,获得积分10
2分钟前
will214发布了新的文献求助10
2分钟前
茜你亦首歌完成签到 ,获得积分10
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
王柯文完成签到,获得积分10
3分钟前
自由的梦露完成签到 ,获得积分10
3分钟前
无极2023完成签到 ,获得积分10
3分钟前
在水一方应助kakakaku采纳,获得10
4分钟前
4分钟前
Langsam发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
kakakaku发布了新的文献求助10
5分钟前
ShowMaker应助风中绝悟采纳,获得20
5分钟前
石鑫发布了新的文献求助20
5分钟前
snah完成签到 ,获得积分10
5分钟前
香蕉觅云应助石鑫采纳,获得10
5分钟前
美丽觅夏完成签到 ,获得积分10
5分钟前
Mistletoe完成签到 ,获得积分10
5分钟前
赘婿应助xu采纳,获得10
5分钟前
吃碗大米饭完成签到,获得积分10
6分钟前
可爱的函函应助kirirto采纳,获得10
6分钟前
6分钟前
xj完成签到,获得积分10
6分钟前
Mipe完成签到,获得积分10
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150515
求助须知:如何正确求助?哪些是违规求助? 2801908
关于积分的说明 7845974
捐赠科研通 2459264
什么是DOI,文献DOI怎么找? 1309180
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601748