Clinical Text Datasets for Medical Artificial Intelligence and Large Language Models — A Systematic Review

自然语言处理 人工智能 计算机科学
作者
Jiageng Wu,Xiaocong Liu,Minghui Li,Wanxin Li,Zichang Su,Shixu Lin,Lucas Garay,Zhiyun Zhang,Yujie Zhang,Qingcheng Zeng,Jie Shen,Changzheng Yuan,Jie Yang
标识
DOI:10.1056/aira2400012
摘要

Privacy and ethical considerations limit access to large-scale clinical datasets, particularly clinical text data, which contain extensive and diverse information and serve as the foundation for building clinical large language models (LLMs). The limited accessibility of clinical text data impedes the development of clinical artificial intelligence systems and hampers research participation from resource-poor regions and medical institutions, thereby exacerbating health care disparities. In this review, we conduct a global review to identify publicly available clinical text datasets and elaborate on their accessibility, diversity, and usability for clinical LLMs. We screened 3962 papers across medical (PubMed and MEDLINE) and computational linguistic academic databases (the Association for Computational Linguistics Anthology) as well as 239 tasks from prevalent medical natural language processing (NLP) challenges, such as National NLP Clinical Challenges (n2c2). We identified 192 unique clinical text datasets that claimed to be publicly available. Following an institutional review board–approved data-requesting pipeline, access was granted to fewer than half (91 of 192 [47.4%]) of the identified datasets, with an additional 14 (7.3%) datasets being available for regulated access and 87 (45.3%) datasets remaining inaccessible. The publicly available datasets cover nine languages from 14 countries and over 10 million clinical text records, which mostly (88 [95.7%]) originated from the Americas, Europe, and Asia, with none originating from Oceania or Africa, leaving these regions significantly underrepresented. Distribution differences were also evident within the focused clinical context and supported NLP tasks, with intensive care unit (18 [16.8%]), respiratory disease (13 [12.1%]), and cardiovascular disease (11 [10.3%]) gaining significant attention. Named entity recognition (23 [21.7%]), text classification (22 [20.8%]), and event extraction (12 [11.3%]) were the most explored NLP tasks on clinical text datasets. To our knowledge, this is the first systematic review to characterize publicly available clinical text datasets, the foundation of clinical LLMs, highlighting the difficulty in accessibility, underrepresentation across regions and languages, and the challenges posed by the LLMs. Sharing diversified and large-scale clinical text data is necessary, with protection to promote health care research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abletoo完成签到,获得积分10
刚刚
Ava应助不知名网友采纳,获得10
1秒前
路非明发布了新的文献求助30
2秒前
dddd发布了新的文献求助10
2秒前
3秒前
觉主发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
在水一方应助学习采纳,获得10
5秒前
爱库珀完成签到,获得积分10
5秒前
Beira发布了新的文献求助10
6秒前
abletoo发布了新的文献求助20
6秒前
稀有人类完成签到 ,获得积分10
6秒前
共享精神应助懒洋洋大王采纳,获得10
7秒前
7秒前
choup53完成签到,获得积分10
7秒前
爱宁完成签到,获得积分10
7秒前
酷波er应助路非明采纳,获得10
8秒前
饱满的鹏涛完成签到,获得积分10
9秒前
lyhwkyjy应助JiangHb采纳,获得10
10秒前
无极微光应助潇洒的书文采纳,获得20
11秒前
czh完成签到,获得积分10
12秒前
12秒前
12秒前
lq完成签到 ,获得积分10
12秒前
崴Jio辣子面完成签到 ,获得积分10
12秒前
单纯谷云完成签到,获得积分10
13秒前
13秒前
FashionBoy应助觉主采纳,获得10
13秒前
英吉利25发布了新的文献求助10
13秒前
霜降发布了新的文献求助10
13秒前
13秒前
14秒前
万能图书馆应助光而不耀采纳,获得10
14秒前
15秒前
15秒前
yy发布了新的文献求助10
16秒前
16秒前
不配.应助积极的老鼠采纳,获得80
16秒前
PHI发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547929
求助须知:如何正确求助?哪些是违规求助? 4633375
关于积分的说明 14630983
捐赠科研通 4574989
什么是DOI,文献DOI怎么找? 2508795
邀请新用户注册赠送积分活动 1485047
关于科研通互助平台的介绍 1456075