Clinical Text Datasets for Medical Artificial Intelligence and Large Language Models — A Systematic Review

自然语言处理 人工智能 计算机科学
作者
Jiageng Wu,Xiaocong Liu,Minghui Li,Wanxin Li,Zichang Su,Shixu Lin,Lucas Garay,Zhiyun Zhang,Yujie Zhang,Qingcheng Zeng,Jie Shen,Changzheng Yuan,Jie Yang
标识
DOI:10.1056/aira2400012
摘要

Privacy and ethical considerations limit access to large-scale clinical datasets, particularly clinical text data, which contain extensive and diverse information and serve as the foundation for building clinical large language models (LLMs). The limited accessibility of clinical text data impedes the development of clinical artificial intelligence systems and hampers research participation from resource-poor regions and medical institutions, thereby exacerbating health care disparities. In this review, we conduct a global review to identify publicly available clinical text datasets and elaborate on their accessibility, diversity, and usability for clinical LLMs. We screened 3962 papers across medical (PubMed and MEDLINE) and computational linguistic academic databases (the Association for Computational Linguistics Anthology) as well as 239 tasks from prevalent medical natural language processing (NLP) challenges, such as National NLP Clinical Challenges (n2c2). We identified 192 unique clinical text datasets that claimed to be publicly available. Following an institutional review board–approved data-requesting pipeline, access was granted to fewer than half (91 of 192 [47.4%]) of the identified datasets, with an additional 14 (7.3%) datasets being available for regulated access and 87 (45.3%) datasets remaining inaccessible. The publicly available datasets cover nine languages from 14 countries and over 10 million clinical text records, which mostly (88 [95.7%]) originated from the Americas, Europe, and Asia, with none originating from Oceania or Africa, leaving these regions significantly underrepresented. Distribution differences were also evident within the focused clinical context and supported NLP tasks, with intensive care unit (18 [16.8%]), respiratory disease (13 [12.1%]), and cardiovascular disease (11 [10.3%]) gaining significant attention. Named entity recognition (23 [21.7%]), text classification (22 [20.8%]), and event extraction (12 [11.3%]) were the most explored NLP tasks on clinical text datasets. To our knowledge, this is the first systematic review to characterize publicly available clinical text datasets, the foundation of clinical LLMs, highlighting the difficulty in accessibility, underrepresentation across regions and languages, and the challenges posed by the LLMs. Sharing diversified and large-scale clinical text data is necessary, with protection to promote health care research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysssbq完成签到,获得积分10
刚刚
Luantyi完成签到,获得积分10
刚刚
1秒前
1秒前
Coatings发布了新的文献求助10
1秒前
Megumi完成签到,获得积分10
1秒前
3秒前
小赵发布了新的文献求助10
4秒前
5秒前
oky完成签到 ,获得积分10
5秒前
6秒前
fish完成签到 ,获得积分10
6秒前
曲艺发布了新的文献求助10
7秒前
7秒前
古夕完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
12秒前
lm发布了新的文献求助10
12秒前
无所归兮应助曲艺采纳,获得10
13秒前
13秒前
yar应助alone采纳,获得30
14秒前
za==应助小赵采纳,获得10
14秒前
15秒前
豆芽发布了新的文献求助10
15秒前
oky发布了新的文献求助10
15秒前
wdy111应助迷路硬币采纳,获得20
17秒前
17秒前
18秒前
艺高人胆大鸡腿完成签到 ,获得积分10
21秒前
乐乐应助焦糖采纳,获得10
21秒前
科研通AI2S应助nalan采纳,获得10
22秒前
静_完成签到 ,获得积分10
22秒前
22秒前
雪白元蝶发布了新的文献求助10
23秒前
23秒前
23秒前
留白完成签到 ,获得积分10
24秒前
共享精神应助小圆采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Economic Geography and Public Policy 900
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021