GRACE: Unveiling Gene Regulatory Networks With Causal Mechanistic Graph Neural Networks in Single-Cell RNA-Sequencing Data

因果推理 推论 计算生物学 基因 基因调控网络 因果模型 生物 遗传学 人工神经网络 机器学习 自编码 计算机科学 人工智能 基因表达 数学 计量经济学 统计
作者
Jiacheng Wang,Yaojia Chen,Quan Zou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3412753
摘要

Reconstructing gene regulatory networks (GRNs) using single-cell RNA sequencing (scRNA-seq) data holds great promise for unraveling cellular fate development and heterogeneity. While numerous machine-learning methods have been proposed to infer GRNs from scRNA-seq gene expression data, many of them operate solely in a statistical or black box manner, limiting their capacity for making causal inferences between genes. In this study, we introduce GRN inference with Accuracy and Causal Explanation (GRACE), a novel graph-based causal autoencoder framework that combines a structural causal model (SCM) with graph neural networks (GNNs) to enable GRN inference and gene causal reasoning from scRNA-seq data. By explicitly modeling causal relationships between genes, GRACE facilitates the learning of regulatory context and gene embeddings. With the learned gene signals, our model successfully decoding the causal structures and alleviates the accurate determination of multiple attributes of gene regulation that is important to determine the regulatory levels. Through extensive evaluations on seven benchmarks, we demonstrate that GRACE outperforms 14 state-of-the-art GRN inference methods, with the incorporation of causal mechanisms significantly enhancing the accuracy of GRN and gene causality inference. Furthermore, the application to human peripheral blood mononuclear cell (PBMC) samples reveals cell type-specific regulators in monocyte phagocytosis and immune regulation, validated through network analysis and functional enrichment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
michellewu发布了新的文献求助10
1秒前
hihi发布了新的文献求助10
3秒前
幽默夜云给幽默夜云的求助进行了留言
5秒前
丘比特应助hao123采纳,获得10
7秒前
愉快绿蝶完成签到,获得积分10
8秒前
隐形曼青应助星星采纳,获得10
10秒前
汉堡包应助MoMo采纳,获得10
10秒前
10秒前
12秒前
丘比特应助PhD-SCAU采纳,获得30
12秒前
EddyLalala完成签到,获得积分10
14秒前
淡淡文博完成签到,获得积分20
14秒前
EddyLalala发布了新的文献求助10
16秒前
Jam发布了新的文献求助10
18秒前
wanci应助wwwwppp采纳,获得10
19秒前
6rkuttsmdt完成签到,获得积分10
19秒前
852应助小青虫采纳,获得10
21秒前
彭于晏应助家园采纳,获得30
22秒前
25秒前
无语的梦菲完成签到,获得积分10
28秒前
Xiaojiu完成签到 ,获得积分10
29秒前
29秒前
seon发布了新的文献求助10
31秒前
酷酷的老太完成签到,获得积分10
37秒前
灵巧的馒头完成签到,获得积分20
41秒前
43秒前
43秒前
健壮保温杯完成签到,获得积分10
44秒前
michellewu完成签到 ,获得积分10
47秒前
wwwwppp发布了新的文献求助10
47秒前
Nostalgia完成签到,获得积分10
47秒前
宝贝蛋完成签到,获得积分10
47秒前
瓜子完成签到,获得积分10
50秒前
50秒前
英俊的铭应助科研通管家采纳,获得10
51秒前
CipherSage应助科研通管家采纳,获得10
51秒前
Estrella应助科研通管家采纳,获得10
51秒前
汉堡包应助科研通管家采纳,获得10
51秒前
深情安青应助科研通管家采纳,获得10
51秒前
星辰大海应助科研通管家采纳,获得10
51秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735903
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016324
捐赠科研通 2996292
什么是DOI,文献DOI怎么找? 1644012
邀请新用户注册赠送积分活动 781709
科研通“疑难数据库(出版商)”最低求助积分说明 749425