A Graph Convolutional Networks-Based DDoS Detection Model

计算机科学 服务拒绝攻击 图形 人工智能 理论计算机科学 万维网 互联网
作者
Braden J. Saunders,Patrice Kisanga,Glaucio H. S. Carvalho,Isaac Woungang
标识
DOI:10.1109/syscon61195.2024.10553611
摘要

Network attacks have exponentially increased over the last years and, seriously, impacting fundamental aspects of our modern society at all levels, i.e., individual, critical infrastructure, and national security. To counterattack these cyber threats, several approaches for detecting or preventing them have been investigated. Ultimately, these approaches culminated in the design and development of Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs). From a detection standpoint, intelligent engines using Artificial Intelligence, Machine learning, and more recently deep learning have played a fundamental role in improving the detection capabilities of such systems. Distributed Denial of Service (DDoS) is an attack that causes loss of availability by overwhelming the target system with malicious packets that preclude legitimate users from accessing the system resources. Despite the development of IDS and IPS, successful DDoS attacks have continued to rise. To address this growing and threatening concern, this paper proposes the design of a Graph Convolutional Network (GCN)- empowered DDoS detection system. The proposed GCN model consists of three hidden layers, each with 128 neurons, and its effectiveness is validated by experiments using the UNB CIC- IDS 2017 DDoS dataset, showing that it achieves an accuracy, precision, recall, and F1-score of 99.95%, 99.95%, 99.95%, and 99.95%, respectively, which are promising results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lynn完成签到,获得积分10
刚刚
烟花应助费凝海采纳,获得10
刚刚
刚刚
eryday0发布了新的文献求助10
1秒前
领导范儿应助老李采纳,获得10
2秒前
3秒前
niko完成签到,获得积分10
4秒前
5秒前
wang发布了新的文献求助10
5秒前
green发布了新的文献求助10
5秒前
姜灭绝完成签到,获得积分10
6秒前
七言完成签到,获得积分10
6秒前
QXS发布了新的文献求助10
6秒前
Ron完成签到,获得积分10
7秒前
木棉完成签到,获得积分10
7秒前
8秒前
黄dudu发布了新的文献求助10
8秒前
8秒前
9秒前
丰知然应助科研通管家采纳,获得10
9秒前
丰知然应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
丰知然应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
丰知然应助科研通管家采纳,获得10
9秒前
欣慰代亦应助科研通管家采纳,获得10
9秒前
9秒前
Owen应助书南采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
10秒前
丰知然应助科研通管家采纳,获得10
10秒前
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
10秒前
俭朴的跳跳糖完成签到 ,获得积分10
10秒前
10秒前
bkagyin应助满眼星辰采纳,获得10
10秒前
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455082
求助须知:如何正确求助?哪些是违规求助? 3050350
关于积分的说明 9021081
捐赠科研通 2738991
什么是DOI,文献DOI怎么找? 1502390
科研通“疑难数据库(出版商)”最低求助积分说明 694500
邀请新用户注册赠送积分活动 693216