A Graph Convolutional Networks-Based DDoS Detection Model

计算机科学 服务拒绝攻击 图形 人工智能 理论计算机科学 万维网 互联网
作者
Braden J. Saunders,Patrice Kisanga,Glaucio H. S. Carvalho,Isaac Woungang
标识
DOI:10.1109/syscon61195.2024.10553611
摘要

Network attacks have exponentially increased over the last years and, seriously, impacting fundamental aspects of our modern society at all levels, i.e., individual, critical infrastructure, and national security. To counterattack these cyber threats, several approaches for detecting or preventing them have been investigated. Ultimately, these approaches culminated in the design and development of Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs). From a detection standpoint, intelligent engines using Artificial Intelligence, Machine learning, and more recently deep learning have played a fundamental role in improving the detection capabilities of such systems. Distributed Denial of Service (DDoS) is an attack that causes loss of availability by overwhelming the target system with malicious packets that preclude legitimate users from accessing the system resources. Despite the development of IDS and IPS, successful DDoS attacks have continued to rise. To address this growing and threatening concern, this paper proposes the design of a Graph Convolutional Network (GCN)- empowered DDoS detection system. The proposed GCN model consists of three hidden layers, each with 128 neurons, and its effectiveness is validated by experiments using the UNB CIC- IDS 2017 DDoS dataset, showing that it achieves an accuracy, precision, recall, and F1-score of 99.95%, 99.95%, 99.95%, and 99.95%, respectively, which are promising results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
toutou应助刘老师采纳,获得10
刚刚
FFF发布了新的文献求助10
1秒前
Rocc发布了新的文献求助50
1秒前
mao发布了新的文献求助10
1秒前
歪歪完成签到,获得积分10
1秒前
2秒前
ze发布了新的文献求助10
2秒前
Ziy发布了新的文献求助30
3秒前
dgz完成签到,获得积分10
3秒前
3秒前
MingFei完成签到,获得积分10
5秒前
传奇3应助独特的飞莲采纳,获得20
5秒前
LZT发布了新的文献求助10
6秒前
小蘑菇应助从容的小霸王采纳,获得10
7秒前
mao完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
无花果应助车车采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
ze完成签到,获得积分10
13秒前
cavi完成签到,获得积分10
13秒前
13秒前
白潇潇发布了新的文献求助30
13秒前
michael发布了新的文献求助10
13秒前
韦别完成签到,获得积分10
13秒前
14秒前
15秒前
合适小刺猬完成签到,获得积分10
15秒前
yuanfen发布了新的文献求助30
15秒前
15秒前
leiyuekai发布了新的文献求助10
17秒前
万能图书馆应助韦别采纳,获得10
17秒前
余泽谦发布了新的文献求助20
18秒前
清爽指甲油完成签到,获得积分10
18秒前
18秒前
求助人员发布了新的文献求助10
18秒前
猫南北发布了新的文献求助30
18秒前
Narcisa发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758607
求助须知:如何正确求助?哪些是违规求助? 5516616
关于积分的说明 15391531
捐赠科研通 4895924
什么是DOI,文献DOI怎么找? 2633383
邀请新用户注册赠送积分活动 1581501
关于科研通互助平台的介绍 1537138