亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Graph Convolutional Networks-Based DDoS Detection Model

计算机科学 服务拒绝攻击 图形 人工智能 理论计算机科学 万维网 互联网
作者
Braden J. Saunders,Patrice Kisanga,Glaucio H. S. Carvalho,Isaac Woungang
标识
DOI:10.1109/syscon61195.2024.10553611
摘要

Network attacks have exponentially increased over the last years and, seriously, impacting fundamental aspects of our modern society at all levels, i.e., individual, critical infrastructure, and national security. To counterattack these cyber threats, several approaches for detecting or preventing them have been investigated. Ultimately, these approaches culminated in the design and development of Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs). From a detection standpoint, intelligent engines using Artificial Intelligence, Machine learning, and more recently deep learning have played a fundamental role in improving the detection capabilities of such systems. Distributed Denial of Service (DDoS) is an attack that causes loss of availability by overwhelming the target system with malicious packets that preclude legitimate users from accessing the system resources. Despite the development of IDS and IPS, successful DDoS attacks have continued to rise. To address this growing and threatening concern, this paper proposes the design of a Graph Convolutional Network (GCN)- empowered DDoS detection system. The proposed GCN model consists of three hidden layers, each with 128 neurons, and its effectiveness is validated by experiments using the UNB CIC- IDS 2017 DDoS dataset, showing that it achieves an accuracy, precision, recall, and F1-score of 99.95%, 99.95%, 99.95%, and 99.95%, respectively, which are promising results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可完成签到 ,获得积分10
1秒前
20秒前
21秒前
熊啊发布了新的文献求助10
27秒前
lj发布了新的文献求助10
29秒前
Ava应助krajicek采纳,获得10
29秒前
NexusExplorer应助熊啊采纳,获得10
36秒前
lj完成签到,获得积分10
37秒前
42秒前
krajicek发布了新的文献求助10
47秒前
排骨大王完成签到,获得积分10
47秒前
1分钟前
1分钟前
灵巧灵松发布了新的文献求助10
1分钟前
1分钟前
Jiayi完成签到 ,获得积分10
1分钟前
1分钟前
熊啊发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Hello应助梦想家采纳,获得10
2分钟前
bocky完成签到 ,获得积分10
2分钟前
滕皓轩完成签到 ,获得积分20
2分钟前
2分钟前
3分钟前
3分钟前
h0jian09完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Akim应助krajicek采纳,获得30
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
krajicek发布了新的文献求助30
4分钟前
4分钟前
Frank完成签到,获得积分10
5分钟前
5分钟前
5分钟前
norberta发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568866
求助须知:如何正确求助?哪些是违规求助? 3991276
关于积分的说明 12355594
捐赠科研通 3663388
什么是DOI,文献DOI怎么找? 2018871
邀请新用户注册赠送积分活动 1053272
科研通“疑难数据库(出版商)”最低求助积分说明 940874