亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gaussian Processes for Vehicle Dynamics Learning in Autonomous Racing

高斯过程 计算机科学 忠诚 人工智能 核(代数) 系统动力学 过程(计算) 比例(比率) 克里金 高斯分布 简单(哲学) 机器学习 数学 物理 量子力学 电信 哲学 认识论 组合数学 操作系统
作者
Jingyun Ning,Madhur Behl
出处
期刊:SAE International journal of vehicle dynamics, stability, and NVH 卷期号:8 (3)
标识
DOI:10.4271/10-08-03-0019
摘要

<div>In high-speed autonomous racing, it is necessary to have an accurate racecar vehicle dynamics model in order to push the vehicle closer to its limits. The choice of the dynamics model has to be made by balancing the computational demands in contrast to model complexity. Learning-based methods, such as Gaussian processes (GP)-based regression, have shown promise toward approximating the vehicle dynamics model. In particular, such methods use a simplified model structure that is easy to tune and then use GP to model the mismatch between the output of the simple model and observed system dynamics. However, current GP approaches often oversimplify the modeling process or apply strong assumptions, leading to unrealistic results that cannot translate to real-world settings. This article presents a comprehensive GP-based design for modeling the dynamics of an autonomous racing car. We do so with high-fidelity simulation data, a 1/10-scale autonomous racing car platform, and a full-scale autonomous Indy racing car. In the first part of this article, we present a rigorous empirical analysis highlighting how the open-loop and closed-loop performance of GP models for autonomous racing is highly sensitive to the choice of the GP kernel, the data sample size, and track configurations suggesting there is no single easy choice that always works. We demonstrate this through a combinatorial simulation setup for 1/10-scale autonomous racing cars. We then present a novel method called DKL-SKIP, which uses deep kernel learning to overcome the challenges of kernel selection and scalability for GP modeling. We evaluate DKL-SKIP on a high-fidelity AutoVerse simulator as well as real data from an autonomous real-world full-scale Indy racing car. Our results reveal that DKL-SKIP surpasses scalable GP models and the N4SID algorithm in both real-world and high-fidelity simulation environments.</div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
田様应助lzlzq采纳,获得10
17秒前
MichaeliaLi完成签到,获得积分20
17秒前
34秒前
沉默的面包完成签到,获得积分10
43秒前
自信松思完成签到 ,获得积分10
44秒前
1分钟前
lzlzq发布了新的文献求助10
1分钟前
lzlzq完成签到,获得积分10
1分钟前
1分钟前
WerWu完成签到,获得积分10
1分钟前
Vvvkkk发布了新的文献求助100
2分钟前
gszy1975发布了新的文献求助10
2分钟前
2分钟前
2分钟前
可靠的书桃完成签到 ,获得积分10
2分钟前
老石完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI40应助繁星采纳,获得10
3分钟前
3分钟前
繁星发布了新的文献求助10
4分钟前
jfc完成签到 ,获得积分10
4分钟前
4分钟前
You发布了新的文献求助10
5分钟前
Jasper应助You采纳,获得10
5分钟前
5分钟前
5分钟前
6分钟前
啊哈发布了新的文献求助10
6分钟前
啊哈完成签到,获得积分10
6分钟前
文艺猫咪完成签到,获得积分10
6分钟前
6分钟前
yoyo发布了新的文献求助20
6分钟前
冬去春来完成签到 ,获得积分10
6分钟前
7分钟前
繁星完成签到,获得积分10
7分钟前
科研通AI40应助繁荣的青旋采纳,获得10
7分钟前
kfh发布了新的文献求助10
7分钟前
章铭-111完成签到 ,获得积分10
7分钟前
7分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471419
求助须知:如何正确求助?哪些是违规求助? 3064517
关于积分的说明 9088231
捐赠科研通 2755148
什么是DOI,文献DOI怎么找? 1511818
邀请新用户注册赠送积分活动 698589
科研通“疑难数据库(出版商)”最低求助积分说明 698473