Interface Engineering via Ti3C2Tx MXene Enabled Highly Efficient Bifunctional NiCoP Array Catalysts for Alkaline Water Splitting

双功能 材料科学 催化作用 分解水 接口(物质) 无机化学 纳米技术 化学工程 有机化学 复合材料 毛细管数 光催化 工程类 化学 毛细管作用
作者
Minsik Jeong,Sanghyeon Park,Taehyun Kwon,Minsol Kwon,Seoyeon Yuk,Seulgi Kim,Changho Yeon,Chan-Woo Lee,Dongju Lee
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (27): 34798-34808 被引量:8
标识
DOI:10.1021/acsami.4c00798
摘要

Developing a non-noble metal-based bifunctional electrocatalyst with high efficiency and stability for overall water splitting is desirable for renewable energy systems. We developed a novel method to fabricate a heterostructured electrocatalyst, comprising a NiCoP nanoneedle array grown on Ti3C2Tx MXene-coated Ni foam (NCP-MX/NF) using a dip-coating hydrothermal method, followed by phosphorization. Due to the abundance of active sites, enhanced electronic kinetics, and sufficient electrolyte accessibility resulting from the synergistic effects of NCP and MXene, NCP-MX/NF bifunctional alkaline catalysts afford superb electrocatalytic performance, with a low overpotential (72 mV at 10 mA cm–2 for HER and 303 mV at 50 mA cm–2 for OER), a low Tafel slope (49.2 mV dec–1 for HER and 69.5 mV dec–1 for OER), and long-term stability. Moreover, the overall water splitting performance of NCP-MX/NF, which requires potentials as low as 1.54 and 1.76 V at a current density of 10 and 50 mA cm–2, respectively, exceeded the performance of the Pt/C∥IrO2 couple in terms of overall water splitting. Density functional theory (DFT) calculations for the NCP/Ti3C2O2 interface model predicted the catalytic contribution to interfacial formation by analyzing the electronic redistribution at the interface. This contribution was also evaluated by calculating the adsorption energetics of the descriptor molecules (H2O and the H and OER intermediates).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吕亚完成签到,获得积分10
4秒前
在水一方应助让我瞅瞅采纳,获得30
4秒前
拒绝拖延完成签到,获得积分20
4秒前
5秒前
8秒前
9秒前
善学以致用应助古月采纳,获得10
9秒前
10秒前
Hello应助chen采纳,获得10
11秒前
11秒前
hushengtan完成签到,获得积分10
12秒前
重要尔曼发布了新的文献求助10
13秒前
吕亚发布了新的文献求助10
13秒前
13秒前
瘦瘦小猫咪完成签到 ,获得积分10
14秒前
17秒前
Ava应助拒绝拖延采纳,获得10
17秒前
losan1120完成签到,获得积分10
17秒前
keyanxiaobai发布了新的文献求助10
18秒前
科研通AI5应助CIXI采纳,获得10
18秒前
18秒前
王小玉玉发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
20秒前
ly发布了新的文献求助10
21秒前
21秒前
猪猪女孩发布了新的文献求助10
21秒前
重要尔曼完成签到,获得积分10
21秒前
22秒前
22秒前
充电宝应助100采纳,获得10
23秒前
让我瞅瞅发布了新的文献求助30
24秒前
灵巧土豆发布了新的文献求助10
24秒前
26秒前
26秒前
woxiangbiye发布了新的文献求助10
26秒前
26秒前
彤彤发布了新的文献求助10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748875
求助须知:如何正确求助?哪些是违规求助? 3291924
关于积分的说明 10075155
捐赠科研通 3007646
什么是DOI,文献DOI怎么找? 1651737
邀请新用户注册赠送积分活动 786700
科研通“疑难数据库(出版商)”最低求助积分说明 751826