亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Variational temporal convolutional networks for I-FENN thermoelasticity

有限元法 应用数学 边值问题 计算机科学 功能(生物学) 人工神经网络 边界(拓扑) 数学 数学优化 算法 数学分析 人工智能 物理 进化生物学 生物 热力学
作者
Diab W. Abueidda,Mostafa E. Mobasher
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:429: 117122-117122 被引量:1
标识
DOI:10.1016/j.cma.2024.117122
摘要

Machine learning (ML) has been used to solve multiphysics problems like thermoelasticity through multi-layer perceptron (MLP) networks. However, MLPs have high computational costs and need to be trained for each prediction instance. To overcome these limitations, we introduced an integrated finite element neural network (I-FENN) framework to solve transient thermoelasticity problems in Abueidda and Mobasher (2024). This approach used a physics-informed temporal convolutional network (PI-TCN) within a finite element scheme for solving transient thermoelasticity problems. In this paper, we introduce an I-FENN framework using a new variational TCN model trained to minimize the thermoelastic variational form rather than the strong form of the energy balance. We mathematically prove that the I-FENN setup based on minimizing the variational form of transient thermoelasticity still leads to the same solution as the strong form. Introducing the variational form to the ML model brings the advantages of lower requirement for the differentiability of the basis function and, thus, lower memory requirement and higher computational efficiency. Also, it automatically satisfies zero Neumann boundary conditions, thus reducing the complexity of the loss function. The formulation based on the variational form complies with thermodynamic requirements. The proposed loss function reduces the difference between predicted and target data while minimizing the variational form of thermoelasticity equations, combining the benefits of both data-driven and variational methods. In addition, this study uses finite element shape functions for spatial gradient calculations and compares their performance against automatic differentiation. Our results reveal that models leveraging shape functions exhibit higher accuracy in capturing the behavior of the thermoelasticity problem and faster convergence. Adding the variational term and using shape functions for gradient calculations ensure better adherence to the underlying physics. We demonstrate the capabilities of this I-FENN framework through multiple numerical examples. Additionally, we discuss the convergence of the proposed variational TCN model and the impact of hyperparameters on its performance. The proposed approach offers a well-founded and flexible platform for solving fully coupled thermoelasticity problems while retaining computational efficiency, where the efficiency scales proportional to the model size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
qwq发布了新的文献求助10
5秒前
_张张完成签到 ,获得积分10
5秒前
zqzqz发布了新的文献求助10
8秒前
橘子发布了新的文献求助10
8秒前
10秒前
16秒前
852应助zqzqz采纳,获得10
16秒前
17秒前
英姑应助qwq采纳,获得10
20秒前
21秒前
曲戈发布了新的文献求助50
24秒前
wenyiboy完成签到,获得积分10
25秒前
25秒前
28秒前
29秒前
研友_LjDgxZ发布了新的文献求助10
31秒前
啊呜0u0发布了新的文献求助30
35秒前
Amekaji完成签到,获得积分10
36秒前
曲戈完成签到,获得积分10
41秒前
二行完成签到 ,获得积分10
42秒前
43秒前
46秒前
50秒前
53秒前
58秒前
58秒前
HRZ完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
啊呜0u0完成签到,获得积分10
1分钟前
豆乳米麻薯完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
1分钟前
旅行完成签到 ,获得积分10
1分钟前
Tendency完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455618
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022875
捐赠科研通 2739402
什么是DOI,文献DOI怎么找? 1502731
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387