Variational temporal convolutional networks for I-FENN thermoelasticity

有限元法 应用数学 边值问题 计算机科学 功能(生物学) 人工神经网络 边界(拓扑) 数学 数学优化 算法 数学分析 人工智能 物理 进化生物学 生物 热力学
作者
Diab W. Abueidda,Mostafa E. Mobasher
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:429: 117122-117122 被引量:1
标识
DOI:10.1016/j.cma.2024.117122
摘要

Machine learning (ML) has been used to solve multiphysics problems like thermoelasticity through multi-layer perceptron (MLP) networks. However, MLPs have high computational costs and need to be trained for each prediction instance. To overcome these limitations, we introduced an integrated finite element neural network (I-FENN) framework to solve transient thermoelasticity problems in Abueidda and Mobasher (2024). This approach used a physics-informed temporal convolutional network (PI-TCN) within a finite element scheme for solving transient thermoelasticity problems. In this paper, we introduce an I-FENN framework using a new variational TCN model trained to minimize the thermoelastic variational form rather than the strong form of the energy balance. We mathematically prove that the I-FENN setup based on minimizing the variational form of transient thermoelasticity still leads to the same solution as the strong form. Introducing the variational form to the ML model brings the advantages of lower requirement for the differentiability of the basis function and, thus, lower memory requirement and higher computational efficiency. Also, it automatically satisfies zero Neumann boundary conditions, thus reducing the complexity of the loss function. The formulation based on the variational form complies with thermodynamic requirements. The proposed loss function reduces the difference between predicted and target data while minimizing the variational form of thermoelasticity equations, combining the benefits of both data-driven and variational methods. In addition, this study uses finite element shape functions for spatial gradient calculations and compares their performance against automatic differentiation. Our results reveal that models leveraging shape functions exhibit higher accuracy in capturing the behavior of the thermoelasticity problem and faster convergence. Adding the variational term and using shape functions for gradient calculations ensure better adherence to the underlying physics. We demonstrate the capabilities of this I-FENN framework through multiple numerical examples. Additionally, we discuss the convergence of the proposed variational TCN model and the impact of hyperparameters on its performance. The proposed approach offers a well-founded and flexible platform for solving fully coupled thermoelasticity problems while retaining computational efficiency, where the efficiency scales proportional to the model size.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dxh完成签到,获得积分20
1秒前
1秒前
1秒前
我是老大应助飞快的诗槐采纳,获得10
1秒前
wanci应助jie采纳,获得10
2秒前
yhxwqkk完成签到 ,获得积分10
2秒前
科研通AI2S应助宴究生采纳,获得10
2秒前
LLL完成签到,获得积分10
2秒前
3秒前
3秒前
墨镒发布了新的文献求助10
3秒前
3秒前
NTUxs完成签到,获得积分10
3秒前
Ashe发布了新的文献求助10
4秒前
4秒前
4秒前
领导范儿应助YGTRECE采纳,获得10
5秒前
5秒前
大模型应助热热采纳,获得10
5秒前
今后应助hao采纳,获得10
6秒前
cui完成签到 ,获得积分20
6秒前
杨德帅发布了新的文献求助10
6秒前
贤惠的芫完成签到,获得积分10
8秒前
紫苏艾草22完成签到,获得积分10
8秒前
8秒前
心灵美的白易完成签到,获得积分10
9秒前
9秒前
9秒前
skr完成签到,获得积分10
9秒前
9秒前
nns发布了新的文献求助10
10秒前
Stone发布了新的文献求助10
10秒前
Silence完成签到 ,获得积分10
10秒前
脑洞疼应助悦耳的荔枝采纳,获得10
10秒前
Deposit发布了新的文献求助10
10秒前
liumenghan发布了新的文献求助30
10秒前
ilmiss发布了新的文献求助10
11秒前
凝凝小完成签到,获得积分10
11秒前
freebird应助ergatoid采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646235
求助须知:如何正确求助?哪些是违规求助? 4770584
关于积分的说明 15033924
捐赠科研通 4804968
什么是DOI,文献DOI怎么找? 2569335
邀请新用户注册赠送积分活动 1526419
关于科研通互助平台的介绍 1485810