Variational temporal convolutional networks for I-FENN thermoelasticity

有限元法 应用数学 边值问题 计算机科学 功能(生物学) 人工神经网络 边界(拓扑) 数学 数学优化 算法 数学分析 人工智能 物理 进化生物学 生物 热力学
作者
Diab W. Abueidda,Mostafa E. Mobasher
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:429: 117122-117122 被引量:1
标识
DOI:10.1016/j.cma.2024.117122
摘要

Machine learning (ML) has been used to solve multiphysics problems like thermoelasticity through multi-layer perceptron (MLP) networks. However, MLPs have high computational costs and need to be trained for each prediction instance. To overcome these limitations, we introduced an integrated finite element neural network (I-FENN) framework to solve transient thermoelasticity problems in Abueidda and Mobasher (2024). This approach used a physics-informed temporal convolutional network (PI-TCN) within a finite element scheme for solving transient thermoelasticity problems. In this paper, we introduce an I-FENN framework using a new variational TCN model trained to minimize the thermoelastic variational form rather than the strong form of the energy balance. We mathematically prove that the I-FENN setup based on minimizing the variational form of transient thermoelasticity still leads to the same solution as the strong form. Introducing the variational form to the ML model brings the advantages of lower requirement for the differentiability of the basis function and, thus, lower memory requirement and higher computational efficiency. Also, it automatically satisfies zero Neumann boundary conditions, thus reducing the complexity of the loss function. The formulation based on the variational form complies with thermodynamic requirements. The proposed loss function reduces the difference between predicted and target data while minimizing the variational form of thermoelasticity equations, combining the benefits of both data-driven and variational methods. In addition, this study uses finite element shape functions for spatial gradient calculations and compares their performance against automatic differentiation. Our results reveal that models leveraging shape functions exhibit higher accuracy in capturing the behavior of the thermoelasticity problem and faster convergence. Adding the variational term and using shape functions for gradient calculations ensure better adherence to the underlying physics. We demonstrate the capabilities of this I-FENN framework through multiple numerical examples. Additionally, we discuss the convergence of the proposed variational TCN model and the impact of hyperparameters on its performance. The proposed approach offers a well-founded and flexible platform for solving fully coupled thermoelasticity problems while retaining computational efficiency, where the efficiency scales proportional to the model size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sundard完成签到,获得积分10
刚刚
老迟到的秋完成签到,获得积分10
1秒前
不想干活应助Lyy采纳,获得10
2秒前
笨笨的大山完成签到,获得积分10
3秒前
所所应助xiaoqi采纳,获得10
3秒前
舒心一凤发布了新的文献求助10
3秒前
所所应助lh0907采纳,获得10
4秒前
5秒前
6秒前
6秒前
贝果奶酪发布了新的文献求助10
7秒前
8秒前
lixiang完成签到,获得积分10
9秒前
可爱的函函应助zhang1采纳,获得30
9秒前
9秒前
冯习完成签到,获得积分10
9秒前
小蘑菇应助nono1031采纳,获得10
10秒前
李一一完成签到 ,获得积分10
10秒前
NexusExplorer应助ls采纳,获得30
11秒前
11秒前
LULU发布了新的文献求助10
12秒前
温暖的凤妖完成签到,获得积分10
12秒前
丘比特应助舒心一凤采纳,获得10
15秒前
15秒前
16秒前
懵懂的莛发布了新的文献求助10
16秒前
拼搏的康乃馨应助浅言采纳,获得10
16秒前
16秒前
ACY完成签到,获得积分10
18秒前
迅速羽毛发布了新的文献求助10
20秒前
20秒前
xiaoqi完成签到,获得积分10
21秒前
天天快乐应助明明明采纳,获得10
21秒前
22秒前
LULU完成签到,获得积分10
22秒前
Qinqinasm完成签到,获得积分10
22秒前
23秒前
Akim应助XX采纳,获得10
23秒前
chenu完成签到 ,获得积分10
23秒前
脑洞疼应助miles采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Formulation Design of Transdermal β1–blocker Patch (“Bisono®Tape”) 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4535194
求助须知:如何正确求助?哪些是违规求助? 3971255
关于积分的说明 12303339
捐赠科研通 3637813
什么是DOI,文献DOI怎么找? 2002831
邀请新用户注册赠送积分活动 1038419
科研通“疑难数据库(出版商)”最低求助积分说明 927807