Variational temporal convolutional networks for I-FENN thermoelasticity

有限元法 应用数学 边值问题 计算机科学 功能(生物学) 人工神经网络 边界(拓扑) 数学 数学优化 算法 数学分析 人工智能 物理 进化生物学 生物 热力学
作者
Diab W. Abueidda,Mostafa E. Mobasher
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:429: 117122-117122 被引量:1
标识
DOI:10.1016/j.cma.2024.117122
摘要

Machine learning (ML) has been used to solve multiphysics problems like thermoelasticity through multi-layer perceptron (MLP) networks. However, MLPs have high computational costs and need to be trained for each prediction instance. To overcome these limitations, we introduced an integrated finite element neural network (I-FENN) framework to solve transient thermoelasticity problems in Abueidda and Mobasher (2024). This approach used a physics-informed temporal convolutional network (PI-TCN) within a finite element scheme for solving transient thermoelasticity problems. In this paper, we introduce an I-FENN framework using a new variational TCN model trained to minimize the thermoelastic variational form rather than the strong form of the energy balance. We mathematically prove that the I-FENN setup based on minimizing the variational form of transient thermoelasticity still leads to the same solution as the strong form. Introducing the variational form to the ML model brings the advantages of lower requirement for the differentiability of the basis function and, thus, lower memory requirement and higher computational efficiency. Also, it automatically satisfies zero Neumann boundary conditions, thus reducing the complexity of the loss function. The formulation based on the variational form complies with thermodynamic requirements. The proposed loss function reduces the difference between predicted and target data while minimizing the variational form of thermoelasticity equations, combining the benefits of both data-driven and variational methods. In addition, this study uses finite element shape functions for spatial gradient calculations and compares their performance against automatic differentiation. Our results reveal that models leveraging shape functions exhibit higher accuracy in capturing the behavior of the thermoelasticity problem and faster convergence. Adding the variational term and using shape functions for gradient calculations ensure better adherence to the underlying physics. We demonstrate the capabilities of this I-FENN framework through multiple numerical examples. Additionally, we discuss the convergence of the proposed variational TCN model and the impact of hyperparameters on its performance. The proposed approach offers a well-founded and flexible platform for solving fully coupled thermoelasticity problems while retaining computational efficiency, where the efficiency scales proportional to the model size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊完成签到 ,获得积分10
刚刚
1秒前
1秒前
泡泡糖发布了新的文献求助10
4秒前
Smile发布了新的文献求助10
6秒前
慕青应助过分着迷采纳,获得10
7秒前
7秒前
南客行完成签到,获得积分10
7秒前
科研通AI2S应助化工渣渣采纳,获得10
8秒前
9秒前
10秒前
科研通AI2S应助LWJ采纳,获得10
10秒前
13秒前
科研通AI2S应助小郭采纳,获得10
15秒前
领导范儿应助MXiV采纳,获得10
15秒前
16秒前
snail完成签到,获得积分10
17秒前
Smile完成签到,获得积分10
17秒前
和谐的阁发布了新的文献求助50
17秒前
18秒前
NexusExplorer应助优秀的枕头采纳,获得10
18秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
19秒前
kkk完成签到 ,获得积分10
20秒前
ys发布了新的文献求助30
21秒前
天真的idiot完成签到 ,获得积分10
22秒前
22秒前
无限飞烟完成签到,获得积分10
23秒前
Hello应助瀚海的雄狮采纳,获得10
23秒前
wujiao完成签到,获得积分20
25秒前
阿翼完成签到 ,获得积分10
26秒前
打打应助小次之山采纳,获得10
27秒前
xiang发布了新的文献求助10
27秒前
28秒前
28秒前
28秒前
30秒前
Alex完成签到,获得积分10
30秒前
CipherSage应助优秀的枕头采纳,获得10
30秒前
31秒前
Alex发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992986
求助须知:如何正确求助?哪些是违规求助? 3533726
关于积分的说明 11263679
捐赠科研通 3273550
什么是DOI,文献DOI怎么找? 1806095
邀请新用户注册赠送积分活动 882942
科研通“疑难数据库(出版商)”最低求助积分说明 809629