A hierarchical attention network integrating multi-scale relationship for drug response prediction

计算机科学 比例(比率) 人工智能 机器学习 数据挖掘 地图学 地理
作者
Xiaoqi Wang,Yuqi Wen,Yixin Zhang,Chong Dai,Yaning Yang,Xiaochen Bo,Song He,Shaoliang Peng
出处
期刊:Information Fusion [Elsevier BV]
卷期号:110: 102485-102485 被引量:2
标识
DOI:10.1016/j.inffus.2024.102485
摘要

Anticancer drug response prediction with deep learning technology has become the foundation of precision medicine. It is essential for anticancer drug response prediction to incorporate multi-scale relationships within feature items and biomedical entities. Therefore, we propose MultiDRP that develops the hierarchical attention networks integrating multi-scale relationship for drug response prediction. MultiDRP can fuse both internal correlation of feature items and external relationship of biomedical entities by hierarchically integrating graph attention and self-attention networks to improve the anticancer drug response prediction. A variety of results showed that MultiDRP generated the great representation by integrating multi-scale relationships, and achieved higher performance compared to existing methods on various prediction scenarios. The results of network proximity, gene ontology biological process (GOBP) enrichment, and drug pathway association analysis show that MultiDRP can accurately screen the sensitive and resistant drugs for cancer cell lines. In vitro experiments, eight novel drugs predicted by MultiDRP exhibited high sensitivity to lung cancer cell line NCI-H23, seven of which showed IC50 values of less than 10nM. These results further suggest that MultiDRP can serve as a powerful tool for anticancer drug response prediction. The source data and code are available at https://github.com/pengsl-lab/MultiDRP.git
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼鱼发布了新的文献求助20
1秒前
李Sir发布了新的文献求助10
1秒前
2秒前
2秒前
高大的冰双完成签到,获得积分10
3秒前
3秒前
陶醉的海冬完成签到 ,获得积分10
4秒前
虚幻沛菡发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
彭于彦祖应助科研通管家采纳,获得30
7秒前
华仔应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
YamDaamCaa应助科研通管家采纳,获得30
7秒前
7秒前
lichanshen发布了新的文献求助10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
欣喜沛芹完成签到,获得积分10
7秒前
所所应助科研通管家采纳,获得10
8秒前
8秒前
agony应助科研通管家采纳,获得10
8秒前
8秒前
乔垣结衣应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992711
求助须知:如何正确求助?哪些是违规求助? 3533584
关于积分的说明 11263072
捐赠科研通 3273260
什么是DOI,文献DOI怎么找? 1806018
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545