Radiomics to Detect Inflammation and Fibrosis on Magnetic Resonance Enterography in Stricturing Crohn’s Disease

克罗恩病 无线电技术 医学 炎症 磁共振成像 疾病 纤维化 内科学 放射科
作者
Prathyush Chirra,Joseph Sleiman,Namita Gandhi,Ilyssa O. Gordon,Mohsen Hariri,Mark E. Baker,Ronald K. Ottichilo,David H. Bruining,Jacob A. Kurowski,Satish E. Viswanath,Florian Rieder
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
被引量:3
标识
DOI:10.1093/ecco-jcc/jjae073
摘要

Abstract Background and Aims Non-invasive cross-sectional imaging via magnetic resonance enterography [MRE] offers excellent accuracy for the diagnosis of stricturing complications in Crohn’s disease [CD] but is limited in determining the degrees of fibrosis and inflammation within a stricture. We developed and validated a radiomics-based machine-learning model for separately characterizing the degree of histopathological inflammation and fibrosis in CD strictures and compared it to centrally read visual radiologist scoring of MRE. Methods This single-centre, cross-sectional study included 51 CD patients [n = 34 for discovery; n = 17 for validation] with terminal ileal strictures confirmed on diagnostic MRE within 15 weeks of resection. Histopathological specimens were scored for inflammation and fibrosis and spatially linked with corresponding pre-surgical MRE sequences. Annotated stricture regions on MRE were scored visually by radiologists as well as underwent 3D radiomics-based machine learning analysis; both were evaluated against histopathology. Results Two distinct sets of radiomic features capturing textural heterogeneity within strictures were linked with each of severe inflammation or severe fibrosis across both the discovery (area under the curve [AUC = 0.69, 0.83] and validation [AUC = 0.67, 0.78] cohorts. Radiologist visual scoring had an AUC = 0.67 for identifying severe inflammation and AUC = 0.35 for severe fibrosis. Use of combined radiomics and radiologist scoring robustly augmented identification of severe inflammation [AUC = 0.79] and modestly improved assessment of severe fibrosis [AUC = 0.79 for severe fibrosis] over individual approaches. Conclusions Radiomic features of CD strictures on MRE can accurately identify severe histopathological inflammation and severe histopathological fibrosis, as well as augment performance of the radiologist visual scoring in stricture characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎土土发布了新的文献求助50
1秒前
1秒前
大抽是谁发布了新的文献求助10
2秒前
2秒前
李健的小迷弟应助公茂源采纳,获得30
2秒前
失眠的凝雁完成签到,获得积分10
2秒前
科研通AI5应助赖道之采纳,获得10
2秒前
Menand完成签到,获得积分10
3秒前
学者发布了新的文献求助10
3秒前
清新完成签到,获得积分10
3秒前
陶弈衡完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
愉快盼曼发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
nemo发布了新的文献求助10
9秒前
学术蝗虫完成签到,获得积分10
9秒前
justin完成签到,获得积分10
10秒前
西瓜啵啵完成签到,获得积分10
12秒前
小周完成签到,获得积分10
12秒前
Louki完成签到 ,获得积分10
12秒前
温暖的颜演完成签到 ,获得积分10
13秒前
yudandan@CJLU发布了新的文献求助10
14秒前
科研小民工应助_呱_采纳,获得50
14秒前
愉快盼曼完成签到,获得积分20
14秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
15秒前
123完成签到,获得积分10
15秒前
13679165979发布了新的文献求助10
16秒前
温暖的钻石完成签到,获得积分10
16秒前
科研通AI5应助赖道之采纳,获得10
16秒前
17秒前
苏卿应助Eric采纳,获得10
17秒前
思源应助hhzz采纳,获得10
18秒前
红红完成签到,获得积分10
21秒前
瑶一瑶发布了新的文献求助10
21秒前
NexusExplorer应助刘鹏宇采纳,获得10
21秒前
roselau完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808