Radiomics to Detect Inflammation and Fibrosis on Magnetic Resonance Enterography in Stricturing Crohn’s Disease

克罗恩病 无线电技术 医学 炎症 磁共振成像 疾病 纤维化 内科学 放射科
作者
Prathyush Chirra,Joseph Sleiman,Namita Gandhi,Ilyssa O. Gordon,Mohsen Hariri,Mark E. Baker,Ronald K. Ottichilo,David H. Bruining,Jacob A. Kurowski,Satish E. Viswanath,Florian Rieder
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
被引量:4
标识
DOI:10.1093/ecco-jcc/jjae073
摘要

Abstract Background and Aims Non-invasive cross-sectional imaging via magnetic resonance enterography [MRE] offers excellent accuracy for the diagnosis of stricturing complications in Crohn’s disease [CD] but is limited in determining the degrees of fibrosis and inflammation within a stricture. We developed and validated a radiomics-based machine-learning model for separately characterizing the degree of histopathological inflammation and fibrosis in CD strictures and compared it to centrally read visual radiologist scoring of MRE. Methods This single-centre, cross-sectional study included 51 CD patients [n = 34 for discovery; n = 17 for validation] with terminal ileal strictures confirmed on diagnostic MRE within 15 weeks of resection. Histopathological specimens were scored for inflammation and fibrosis and spatially linked with corresponding pre-surgical MRE sequences. Annotated stricture regions on MRE were scored visually by radiologists as well as underwent 3D radiomics-based machine learning analysis; both were evaluated against histopathology. Results Two distinct sets of radiomic features capturing textural heterogeneity within strictures were linked with each of severe inflammation or severe fibrosis across both the discovery (area under the curve [AUC = 0.69, 0.83] and validation [AUC = 0.67, 0.78] cohorts. Radiologist visual scoring had an AUC = 0.67 for identifying severe inflammation and AUC = 0.35 for severe fibrosis. Use of combined radiomics and radiologist scoring robustly augmented identification of severe inflammation [AUC = 0.79] and modestly improved assessment of severe fibrosis [AUC = 0.79 for severe fibrosis] over individual approaches. Conclusions Radiomic features of CD strictures on MRE can accurately identify severe histopathological inflammation and severe histopathological fibrosis, as well as augment performance of the radiologist visual scoring in stricture characterization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助edtaa采纳,获得10
刚刚
刚刚
斯文败类应助Leon采纳,获得10
1秒前
wenchong完成签到,获得积分10
1秒前
1秒前
个性小熊猫完成签到,获得积分10
2秒前
David123发布了新的文献求助10
2秒前
土土完成签到 ,获得积分10
3秒前
fhz关闭了fhz文献求助
3秒前
后陡门小学生完成签到 ,获得积分10
3秒前
3秒前
3秒前
唯心止论完成签到,获得积分10
4秒前
希望天下0贩的0应助洪亭采纳,获得10
4秒前
糖炒李子完成签到,获得积分10
4秒前
4秒前
4秒前
L山间葱发布了新的文献求助10
5秒前
yuan完成签到,获得积分10
5秒前
2R完成签到,获得积分10
5秒前
5秒前
希望天下0贩的0应助yqsf789采纳,获得10
5秒前
Dyson Hou发布了新的文献求助10
6秒前
6秒前
李丽完成签到,获得积分20
6秒前
落后十八完成签到,获得积分10
6秒前
0812完成签到,获得积分10
6秒前
6秒前
伦爸爸完成签到,获得积分10
7秒前
忧虑的鹭洋完成签到,获得积分10
7秒前
云ch发布了新的文献求助10
7秒前
7秒前
蓝天发布了新的文献求助10
7秒前
miemiemie完成签到,获得积分10
7秒前
华仔应助李欣悦采纳,获得10
8秒前
8秒前
Echo_枕星关注了科研通微信公众号
8秒前
8秒前
光亮又晴发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836