Radiomics to Detect Inflammation and Fibrosis on Magnetic Resonance Enterography in Stricturing Crohn’s Disease

克罗恩病 无线电技术 医学 炎症 磁共振成像 疾病 纤维化 内科学 放射科
作者
Prathyush Chirra,Joseph Sleiman,Namita Gandhi,Ilyssa O. Gordon,Mohsen Hariri,Mark E. Baker,Ronald K. Ottichilo,David H. Bruining,Jacob A. Kurowski,Satish E. Viswanath,Florian Rieder
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
被引量:4
标识
DOI:10.1093/ecco-jcc/jjae073
摘要

Abstract Background and Aims Non-invasive cross-sectional imaging via magnetic resonance enterography [MRE] offers excellent accuracy for the diagnosis of stricturing complications in Crohn’s disease [CD] but is limited in determining the degrees of fibrosis and inflammation within a stricture. We developed and validated a radiomics-based machine-learning model for separately characterizing the degree of histopathological inflammation and fibrosis in CD strictures and compared it to centrally read visual radiologist scoring of MRE. Methods This single-centre, cross-sectional study included 51 CD patients [n = 34 for discovery; n = 17 for validation] with terminal ileal strictures confirmed on diagnostic MRE within 15 weeks of resection. Histopathological specimens were scored for inflammation and fibrosis and spatially linked with corresponding pre-surgical MRE sequences. Annotated stricture regions on MRE were scored visually by radiologists as well as underwent 3D radiomics-based machine learning analysis; both were evaluated against histopathology. Results Two distinct sets of radiomic features capturing textural heterogeneity within strictures were linked with each of severe inflammation or severe fibrosis across both the discovery (area under the curve [AUC = 0.69, 0.83] and validation [AUC = 0.67, 0.78] cohorts. Radiologist visual scoring had an AUC = 0.67 for identifying severe inflammation and AUC = 0.35 for severe fibrosis. Use of combined radiomics and radiologist scoring robustly augmented identification of severe inflammation [AUC = 0.79] and modestly improved assessment of severe fibrosis [AUC = 0.79 for severe fibrosis] over individual approaches. Conclusions Radiomic features of CD strictures on MRE can accurately identify severe histopathological inflammation and severe histopathological fibrosis, as well as augment performance of the radiologist visual scoring in stricture characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
核桃小小苏完成签到,获得积分10
2秒前
3秒前
4秒前
英俊的铭应助小巧十三采纳,获得10
5秒前
ll发布了新的文献求助10
6秒前
liia发布了新的文献求助10
7秒前
BJUTyang发布了新的文献求助10
8秒前
海绵宝宝完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助150
9秒前
发发发完成签到,获得积分10
13秒前
123完成签到,获得积分10
14秒前
14秒前
jiajiajia完成签到,获得积分20
14秒前
英姑应助LucyMartinez采纳,获得10
15秒前
葛儿完成签到 ,获得积分10
17秒前
小巧十三完成签到,获得积分10
18秒前
liia完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
李爱国应助戴明琪采纳,获得30
24秒前
25秒前
灰机灰机完成签到,获得积分10
25秒前
oahcchao完成签到,获得积分10
28秒前
30秒前
Zehn发布了新的文献求助10
32秒前
深情安青应助irisjlj采纳,获得10
33秒前
可爱的函函应助探索小新采纳,获得10
35秒前
35秒前
无花果应助Zehn采纳,获得10
36秒前
xsy完成签到 ,获得积分10
38秒前
caoxiwei发布了新的文献求助10
39秒前
量子星尘发布了新的文献求助10
40秒前
42秒前
44秒前
45秒前
45秒前
踏实映天完成签到 ,获得积分10
45秒前
冰之完成签到,获得积分10
47秒前
MHY完成签到,获得积分20
48秒前
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883546
求助须知:如何正确求助?哪些是违规求助? 4169043
关于积分的说明 12935786
捐赠科研通 3929327
什么是DOI,文献DOI怎么找? 2156096
邀请新用户注册赠送积分活动 1174515
关于科研通互助平台的介绍 1079202