伤口愈合
化学
生物医学工程
生物物理学
细胞生物学
医学
免疫学
生物
作者
Shuai Wu,Jiacheng Wu,Hai Yu,Jinrong Zhang,Jianan Huang,Lin Zhou,Liehua Deng,Liang Hong
标识
DOI:10.1016/j.ijbiomac.2024.132387
摘要
Alginate (SA) comprises repeating unis of β-1, 4 linked β-D-mannuronic acid (M) and α-L-guloronic acid (G) in varying proportions. The M/G ratio greatly impacts its anti-inflammatory properties in tissue healing wound, as less knowledge reported. This study examined the performances of both SA and SA hydrogel crosslinked with copper ions (SA-Cu) with different M/G ratios are studied. SA with higher M/G ratios stimulated macrophage migration and shifted from M0 to the pro-inflammatory Ml phenotype, while lower M/G ratios shifted from M1 to the pro-repair M2 phenotype. Furthermore, SA-Cu hydrogels with lower M/G ratios exhibited enhanced cross-linking degree, mechanical and rheological properties, as well Cu releasing rate. The reason may be attributed to a relative easy binding between Cu ions and G unit among Cu ions, M unit and G unit. In vitro cell evaluation showed that SA-Cu hydrogel with M/G ratio of 1:1 activated M2 macrophages and up-regulated anti-inflammatory cytokines expression more effectively than those of SA-Cu ratios (2:1) and (1:2). In vivo, SA-Cu hydrogel with M/G ratio of 1:1 expedited diabetic wound healing, accelerating infiltration and phenotype shift of M2 macrophages, and enhancing anti-inflammatory factors, epithelialization and collagen deposition in healing phases. This research highlights the significant role of M/G ratios in SA materials in influencing macrophage behavior and inflammatory responses, which would benefit its application field.
科研通智能强力驱动
Strongly Powered by AbleSci AI