The Capacity and Robustness Trade-off: Revisiting the Channel Independent Strategy for Multivariate Time Series Forecasting

稳健性(进化) 计算机科学 多元统计 时间序列 系列(地层学) 数据挖掘 计量经济学 人工智能 机器学习 数学 生物化学 生物 基因 古生物学 化学
作者
Lu Han,Han-Jia Ye,De‐Chuan Zhan
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:18
标识
DOI:10.1109/tkde.2024.3400008
摘要

Multivariate time series data comprises various channels of variables. The multivariate forecasting models need to capture the relationship between the channels to accurately predict future values. However, recently, there has been an emergence of methods that employ the Channel Independent (CI) strategy. These methods view multivariate time series data as separate univariate time series and disregard the correlation between channels. Surprisingly, our empirical results have shown that models trained with the CI strategy outperform those trained with the Channel Dependent (CD) strategy, usually by a significant margin. Nevertheless, the reasons behind this phenomenon have not yet been thoroughly explored in the literature. This paper provides comprehensive empirical and theoretical analyses of the characteristics of multivariate time series datasets and the CI/CD strategy. Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series. In contrast, the CI approach trades capacity for robust prediction. Practical measures inspired by these analyses are proposed to address the capacity and robustness dilemma, including a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy. We hope our findings can raise awareness among researchers about the characteristics of multivariate time series and inspire the construction of better forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自建发布了新的文献求助10
1秒前
坦率纸飞机完成签到,获得积分10
1秒前
陈末应助秋北辰采纳,获得10
1秒前
2秒前
李爱国应助小懒猪采纳,获得10
2秒前
微笑中恶发布了新的文献求助10
2秒前
su完成签到,获得积分10
2秒前
Meyako应助李继宏采纳,获得10
3秒前
zhuboujs发布了新的文献求助10
3秒前
12345完成签到,获得积分10
4秒前
kentonchow应助guozizi采纳,获得50
5秒前
小蘑菇应助guozizi采纳,获得10
5秒前
司空若云发布了新的文献求助30
5秒前
冰柠檬完成签到,获得积分10
5秒前
6秒前
杨哈哈完成签到,获得积分10
6秒前
Ava应助iiianchen采纳,获得10
7秒前
wanwusheng完成签到,获得积分10
7秒前
灵兰完成签到,获得积分10
8秒前
accept完成签到,获得积分10
8秒前
8秒前
hh关注了科研通微信公众号
9秒前
9秒前
Owen应助nwds采纳,获得10
10秒前
柒柒完成签到,获得积分10
10秒前
Melody发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
Ava应助司空若云采纳,获得30
14秒前
酷酷幼旋发布了新的文献求助30
14秒前
小酸奶发布了新的文献求助10
14秒前
15秒前
15秒前
island完成签到,获得积分20
16秒前
16秒前
乔龙鑫完成签到,获得积分10
17秒前
ZKG完成签到 ,获得积分10
18秒前
azdax完成签到,获得积分20
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434254
求助须知:如何正确求助?哪些是违规求助? 4546529
关于积分的说明 14202959
捐赠科研通 4466464
什么是DOI,文献DOI怎么找? 2448165
邀请新用户注册赠送积分活动 1439046
关于科研通互助平台的介绍 1415945