The Capacity and Robustness Trade-off: Revisiting the Channel Independent Strategy for Multivariate Time Series Forecasting

稳健性(进化) 计算机科学 多元统计 时间序列 系列(地层学) 数据挖掘 计量经济学 人工智能 机器学习 数学 生物化学 生物 基因 古生物学 化学
作者
Lu Han,Han-Jia Ye,De‐Chuan Zhan
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:18
标识
DOI:10.1109/tkde.2024.3400008
摘要

Multivariate time series data comprises various channels of variables. The multivariate forecasting models need to capture the relationship between the channels to accurately predict future values. However, recently, there has been an emergence of methods that employ the Channel Independent (CI) strategy. These methods view multivariate time series data as separate univariate time series and disregard the correlation between channels. Surprisingly, our empirical results have shown that models trained with the CI strategy outperform those trained with the Channel Dependent (CD) strategy, usually by a significant margin. Nevertheless, the reasons behind this phenomenon have not yet been thoroughly explored in the literature. This paper provides comprehensive empirical and theoretical analyses of the characteristics of multivariate time series datasets and the CI/CD strategy. Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series. In contrast, the CI approach trades capacity for robust prediction. Practical measures inspired by these analyses are proposed to address the capacity and robustness dilemma, including a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy. We hope our findings can raise awareness among researchers about the characteristics of multivariate time series and inspire the construction of better forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI2S应助神勇的映真采纳,获得10
刚刚
scsc完成签到,获得积分10
刚刚
ghhu完成签到,获得积分10
1秒前
优美的莹芝完成签到,获得积分10
1秒前
RBT完成签到,获得积分10
1秒前
2秒前
wmumu完成签到 ,获得积分20
3秒前
彩色的三德完成签到,获得积分10
3秒前
宋依依发布了新的文献求助10
3秒前
噜噜噜噜噜完成签到,获得积分10
4秒前
lrid完成签到 ,获得积分10
4秒前
饱满语风发布了新的文献求助30
4秒前
vespa完成签到,获得积分20
5秒前
sunyanghu369发布了新的文献求助10
5秒前
魏猛完成签到,获得积分10
5秒前
sarah完成签到,获得积分10
6秒前
6秒前
RBT发布了新的文献求助10
6秒前
爆米花应助yixiaolou采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
cayn发布了新的文献求助10
7秒前
WSGQT完成签到,获得积分10
7秒前
8秒前
8秒前
新疆大枣完成签到,获得积分10
9秒前
Bressanone完成签到,获得积分10
9秒前
萨伊普完成签到,获得积分10
9秒前
10秒前
10秒前
YTY完成签到,获得积分10
10秒前
DDD完成签到,获得积分10
11秒前
王大锤完成签到,获得积分10
13秒前
杜青完成签到,获得积分10
13秒前
芝芝完成签到,获得积分10
14秒前
NexusExplorer应助北还北采纳,获得10
14秒前
冷静水蓝完成签到 ,获得积分10
15秒前
15秒前
勤奋完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418797
求助须知:如何正确求助?哪些是违规求助? 4534433
关于积分的说明 14143995
捐赠科研通 4450685
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433045
关于科研通互助平台的介绍 1410502