亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Capacity and Robustness Trade-off: Revisiting the Channel Independent Strategy for Multivariate Time Series Forecasting

稳健性(进化) 计算机科学 多元统计 时间序列 系列(地层学) 数据挖掘 计量经济学 人工智能 机器学习 数学 生物化学 生物 基因 古生物学 化学
作者
Lu Han,Han-Jia Ye,De‐Chuan Zhan
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-14 被引量:18
标识
DOI:10.1109/tkde.2024.3400008
摘要

Multivariate time series data comprises various channels of variables. The multivariate forecasting models need to capture the relationship between the channels to accurately predict future values. However, recently, there has been an emergence of methods that employ the Channel Independent (CI) strategy. These methods view multivariate time series data as separate univariate time series and disregard the correlation between channels. Surprisingly, our empirical results have shown that models trained with the CI strategy outperform those trained with the Channel Dependent (CD) strategy, usually by a significant margin. Nevertheless, the reasons behind this phenomenon have not yet been thoroughly explored in the literature. This paper provides comprehensive empirical and theoretical analyses of the characteristics of multivariate time series datasets and the CI/CD strategy. Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series. In contrast, the CI approach trades capacity for robust prediction. Practical measures inspired by these analyses are proposed to address the capacity and robustness dilemma, including a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy. We hope our findings can raise awareness among researchers about the characteristics of multivariate time series and inspire the construction of better forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心百川完成签到 ,获得积分10
14秒前
30秒前
38秒前
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
秋瑟应助0717采纳,获得10
1分钟前
2分钟前
lyy完成签到 ,获得积分10
2分钟前
2分钟前
mm完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Yang2完成签到,获得积分10
3分钟前
Sailzyf完成签到,获得积分10
3分钟前
芳芳完成签到,获得积分10
3分钟前
可爱的函函应助芳芳采纳,获得10
3分钟前
Orange应助坦率嫣然采纳,获得10
3分钟前
852应助sam采纳,获得10
3分钟前
3分钟前
3分钟前
sam完成签到,获得积分10
3分钟前
坦率嫣然发布了新的文献求助10
3分钟前
sam发布了新的文献求助10
3分钟前
浮游应助sam采纳,获得10
4分钟前
田様应助坦率嫣然采纳,获得10
4分钟前
共享精神应助长情胡萝卜采纳,获得10
4分钟前
4分钟前
4分钟前
Shicheng完成签到,获得积分10
4分钟前
顺心的惜蕊完成签到 ,获得积分10
4分钟前
xyj完成签到,获得积分20
4分钟前
充电宝应助xyj采纳,获得10
4分钟前
油点小鳄发布了新的文献求助10
5分钟前
甜蜜水蜜桃完成签到 ,获得积分10
5分钟前
5分钟前
ZanE完成签到,获得积分10
5分钟前
窝窝窝书完成签到,获得积分10
6分钟前
chiyu完成签到,获得积分10
6分钟前
领导范儿应助WHDD采纳,获得10
6分钟前
油点小鳄完成签到,获得积分10
6分钟前
科研通AI2S应助封尘逸动采纳,获得10
6分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137431
求助须知:如何正确求助?哪些是违规求助? 4337267
关于积分的说明 13511310
捐赠科研通 4175854
什么是DOI,文献DOI怎么找? 2289760
邀请新用户注册赠送积分活动 1290277
关于科研通互助平台的介绍 1231967