The Capacity and Robustness Trade-off: Revisiting the Channel Independent Strategy for Multivariate Time Series Forecasting

稳健性(进化) 计算机科学 多元统计 时间序列 系列(地层学) 数据挖掘 计量经济学 人工智能 机器学习 数学 古生物学 生物化学 化学 生物 基因
作者
Lu Han,Han-Jia Ye,De‐Chuan Zhan
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:18
标识
DOI:10.1109/tkde.2024.3400008
摘要

Multivariate time series data comprises various channels of variables. The multivariate forecasting models need to capture the relationship between the channels to accurately predict future values. However, recently, there has been an emergence of methods that employ the Channel Independent (CI) strategy. These methods view multivariate time series data as separate univariate time series and disregard the correlation between channels. Surprisingly, our empirical results have shown that models trained with the CI strategy outperform those trained with the Channel Dependent (CD) strategy, usually by a significant margin. Nevertheless, the reasons behind this phenomenon have not yet been thoroughly explored in the literature. This paper provides comprehensive empirical and theoretical analyses of the characteristics of multivariate time series datasets and the CI/CD strategy. Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series. In contrast, the CI approach trades capacity for robust prediction. Practical measures inspired by these analyses are proposed to address the capacity and robustness dilemma, including a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy. We hope our findings can raise awareness among researchers about the characteristics of multivariate time series and inspire the construction of better forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助fhbc采纳,获得10
刚刚
半山发布了新的文献求助10
刚刚
gfhdf完成签到,获得积分10
刚刚
乐乐应助grammays采纳,获得10
1秒前
WLCR完成签到,获得积分10
1秒前
li完成签到,获得积分10
1秒前
完美世界应助kk采纳,获得10
1秒前
伶俐鹤轩应助饱满金毛采纳,获得10
1秒前
1秒前
善学以致用应助zzc采纳,获得10
2秒前
2秒前
mwb发布了新的文献求助10
3秒前
Peng发布了新的文献求助10
3秒前
WLCR发布了新的文献求助10
5秒前
6秒前
自由的冰蓝完成签到,获得积分10
7秒前
8秒前
cookie完成签到,获得积分10
9秒前
10秒前
邓焕然发布了新的文献求助10
10秒前
grammays完成签到,获得积分20
12秒前
12秒前
小红完成签到 ,获得积分10
12秒前
吨吨发布了新的文献求助10
14秒前
Eastonlyzhang发布了新的文献求助10
14秒前
何小茶发布了新的文献求助10
15秒前
完美世界应助Peng采纳,获得10
15秒前
康康发布了新的文献求助10
17秒前
18秒前
22秒前
fhbc发布了新的文献求助10
24秒前
chri驳回了puhu应助
26秒前
26秒前
思源应助夏叶采纳,获得10
27秒前
Eastonlyzhang完成签到,获得积分10
28秒前
28秒前
shelemi发布了新的文献求助10
29秒前
HCLonely举报聆听求助涉嫌违规
30秒前
pluto应助Eifuly采纳,获得30
30秒前
小于发布了新的文献求助10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313635
求助须知:如何正确求助?哪些是违规求助? 2945947
关于积分的说明 8527726
捐赠科研通 2621578
什么是DOI,文献DOI怎么找? 1433864
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637