Regulating anionic redox reversibility in Li-rich layered cathodes via diffusion-induced entropy-assisted surface engineering

材料科学 氧化还原 阴极 扩散 化学工程 表面工程 化学物理 纳米技术 物理化学 热力学 冶金 化学 物理 工程类
作者
Jiayu Zhao,Yuefeng Su,Jinyang Dong,Qi Shi,Yun Lu,Ning Li,Haoyu Wang,Youyou Fang,Wenbo Li,Jianan Hao,Yujia Wu,Qiongqiong Qi,Feng Wu,Lai Chen
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:70: 103550-103550 被引量:22
标识
DOI:10.1016/j.ensm.2024.103550
摘要

Cobalt-free lithium- and manganese-rich layered oxides (LMROs) are regarded as effective cathode materials for lithium storage due to their high capacity and cost-effectiveness. However, challenges with structural degradation, resulting in poor cyclability and rate performance, have hindered their widespread use. Essentially, rapid structural degradation arises from irreversible and complex redox reactions, triggering oxygen release, transition metal migration, and electrolyte decomposition. To tackle this issue, we propose an epitaxial entropy-assisted construction approach to develop a sturdy surface with adaptable composition, stabilising the surface crystal structure and preventing undesirable interface reactions. This distinct reconstructed surface comprises diverse heterogeneous elements and composite microstructures. The heteroatom-doped layer, with multi-doping sites like Li, O site, and tetrahedral positions, effectively manages the chemical environment and electronic structure of surface lattice oxygen. This epitaxial entropy stabilisation approach, stemming from multi-element synergy, effectively controls redox progress to limit oxygen release and curb transition metal migration, reducing structural decay. Additionally, the composite coated layer, containing oxygen defects and heterogeneous spinel phases, can hinder electrolyte corrosion and promote Li+ transport. Using these epitaxial entropy surface modifications, the LMRO cathode demonstrates regulated anionic redox reversibility and enhanced cycling stability across diverse operational conditions. This epitaxial entropy-assisted surface engineering offers a promising avenue for stabilising high-energy cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nn完成签到,获得积分10
刚刚
Orange应助lynn采纳,获得30
1秒前
小蘑菇应助迷路的初柔采纳,获得10
1秒前
LAN发布了新的文献求助10
2秒前
鑫渊完成签到,获得积分10
2秒前
3秒前
lycoris发布了新的文献求助10
4秒前
4秒前
牧野七完成签到,获得积分10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
打打应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
风中冰香应助科研通管家采纳,获得10
5秒前
Hilda007应助科研通管家采纳,获得10
5秒前
风中冰香应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
马启荣完成签到,获得积分20
6秒前
Criminology34应助LEI采纳,获得10
6秒前
Mic应助科研通管家采纳,获得10
6秒前
Hilda007应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
6秒前
hejingyan应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
creasent应助科研通管家采纳,获得30
7秒前
Mic应助科研通管家采纳,获得10
7秒前
Mic应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492