AI-Assisted Insole Sensing System for Multifunctional Plantar-Healthcare Applications

可穿戴计算机 材料科学 计算机科学 耐久性 压力传感器 步态 光强度 弯曲 机械工程 嵌入式系统 复合材料 光学 工程类 生理学 物理 生物
作者
Kaiyuan Xiang,Mengjie Liu,Jun Chen,Yingshuo Bao,Zhuo Wang,Kun Xiao,Chuanxin Teng,Nikolai Ushakov,Santosh Kumar,Xiaoli Li,Rui Min
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (25): 32662-32678 被引量:1
标识
DOI:10.1021/acsami.4c04467
摘要

The pervasive global issue of population aging has led to a growing demand for health monitoring, while the advent of electronic wearable devices has greatly alleviated the strain on the industry. However, these devices come with inherent limitations, such as electromagnetic radiation, complex structures, and high prices. Herein, a Solaris silicone rubber-integrated PMMA polymer optical fiber (S-POF) intelligent insole sensing system has been developed for remote, portable, cost-effective, and real-time gait monitoring. The system is capable of sensitively converting the pressure of key points on the sole into changes in light intensity with correlation coefficients of 0.995, 0.952, and 0.910. The S-POF sensing structure demonstrates excellent durability with a 4.8% variation in output after 10,000 cycles and provides stable feedback for bending angles. It also exhibits water resistance and temperature resistance within a certain range. Its multichannel multiplexing framework allows a smartphone to monitor multiple S-POF channels simultaneously, meeting the requirements of convenience for daily care. Also, the system can efficiently and accurately provide parameters such as pressure, step cadence, and pressure distribution, enabling the analysis of gait phases and patterns with errors of only 4.16% and 6.25% for the stance phase (STP) and the swing phase (SWP), respectively. Likewise, after comparing various AI models, an S-POF channel-based gait pattern recognition technique has been proposed with a high accuracy of up to 96.87%. Such experimental results demonstrate that the system is promising to further promote the development of rehabilitation and healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助925采纳,获得10
刚刚
南桑完成签到 ,获得积分10
刚刚
酷波er应助疯狂的修杰采纳,获得10
刚刚
帅气天荷完成签到 ,获得积分10
2秒前
无聊的霸完成签到,获得积分10
3秒前
Kris完成签到,获得积分10
3秒前
李健的小迷弟应助李庆采纳,获得10
3秒前
4秒前
宇文安寒发布了新的文献求助20
4秒前
芝麻糊应助好像起风了采纳,获得30
5秒前
请叫我风吹麦浪应助Britney采纳,获得10
6秒前
英姑应助wangzhiqin采纳,获得10
7秒前
孤独孤风发布了新的文献求助10
8秒前
PQ发布了新的文献求助10
8秒前
10秒前
HY完成签到,获得积分20
12秒前
12秒前
13秒前
PQ完成签到,获得积分10
14秒前
gds完成签到,获得积分10
14秒前
芝麻糊应助lan采纳,获得10
14秒前
14秒前
Lucille发布了新的文献求助10
15秒前
mint关注了科研通微信公众号
15秒前
15秒前
ddddd完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
孤独孤风完成签到,获得积分10
16秒前
iconcrete应助jing采纳,获得20
17秒前
17秒前
毛豆应助lh采纳,获得10
18秒前
925发布了新的文献求助10
18秒前
孙枭雪发布了新的文献求助20
19秒前
19秒前
20秒前
细细发布了新的文献求助10
20秒前
HY发布了新的文献求助30
20秒前
张腾雕发布了新的文献求助10
20秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462453
求助须知:如何正确求助?哪些是违规求助? 3056020
关于积分的说明 9050191
捐赠科研通 2745593
什么是DOI,文献DOI怎么找? 1506464
科研通“疑难数据库(出版商)”最低求助积分说明 696123
邀请新用户注册赠送积分活动 695633