Strategy to Empower Nontargeted Metabolomics by Triple-Dimensional Combinatorial Derivatization with MS-TDF Software

化学 衍生化 代谢组学 酰肼 代谢物 试剂 组合化学 气相色谱-质谱法 色谱法 质谱法 有机化学 生物化学
作者
Caixia Yuan,Ying Jin,Hairong Zhang,Simian Chen,Jiajin Yi,Qiang Xie,Jiyang Dong,Caisheng Wu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (19): 7634-7642 被引量:1
标识
DOI:10.1021/acs.analchem.4c00527
摘要

Chemical derivatization is a widely employed strategy in metabolomics to enhance metabolite coverage by improving chromatographic behavior and increasing the ionization rates in mass spectroscopy (MS). However, derivatization might complicate MS data, posing challenges for data mining due to the lack of a corresponding benchmark database. To address this issue, we developed a triple-dimensional combinatorial derivatization strategy for nontargeted metabolomics. This strategy utilizes three structurally similar derivatization reagents and is supported by MS-TDF software for accelerated data processing. Notably, simultaneous derivatization of specific metabolite functional groups in biological samples produced compounds with stable but distinct chromatographic retention times and mass numbers, facilitating discrimination by MS-TDF, an in-house MS data processing software. In this study, carbonyl analogues in human plasma were derivatized using a combination of three hydrazide-based derivatization reagents: 2-hydrazinopyridine, 2-hydrazino-5-methylpyridine, and 2-hydrazino-5-cyanopyridine (6-hydrazinonicotinonitrile). This approach was applied to identify potential carbonyl biomarkers in lung cancer. Analysis and validation of human plasma samples demonstrated that our strategy improved the recognition accuracy of metabolites and reduced the risk of false positives, providing a useful method for nontargeted metabolomics studies. The MATLAB code for MS-TDF is available on GitHub at https://github.com/CaixiaYuan/MS-TDF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一投就中发布了新的文献求助30
2秒前
3秒前
3秒前
幽默书白完成签到,获得积分10
4秒前
奋斗的苹果完成签到,获得积分10
4秒前
个性的荆发布了新的文献求助10
5秒前
blue发布了新的文献求助10
5秒前
勤恳寒安发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
负责乐安完成签到,获得积分10
7秒前
9秒前
9秒前
你能行完成签到,获得积分10
9秒前
9秒前
Denmark发布了新的文献求助10
10秒前
10秒前
狄百招完成签到,获得积分0
10秒前
许多年以后完成签到,获得积分10
10秒前
春风发布了新的文献求助10
11秒前
fuchao完成签到,获得积分20
11秒前
刘志超发布了新的文献求助10
12秒前
火星上誉完成签到 ,获得积分10
12秒前
科研辣鸡发布了新的文献求助10
12秒前
dmxhh完成签到 ,获得积分10
13秒前
13秒前
13秒前
qiu发布了新的文献求助10
13秒前
小蘑菇应助低调点小象采纳,获得10
13秒前
13秒前
小二郎应助芋泥面包采纳,获得10
14秒前
15秒前
15秒前
一滴水完成签到,获得积分10
15秒前
1233445发布了新的文献求助10
15秒前
科研之路顺利完成签到,获得积分10
16秒前
坚强的缘分完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790