Strategy to Empower Nontargeted Metabolomics by Triple-Dimensional Combinatorial Derivatization with MS-TDF Software

化学 衍生化 代谢组学 酰肼 代谢物 试剂 组合化学 气相色谱-质谱法 色谱法 质谱法 有机化学 生物化学
作者
Caixia Yuan,Ying Jin,Hairong Zhang,Simian Chen,Jiajin Yi,Qiang Xie,Jiyang Dong,Caisheng Wu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (19): 7634-7642 被引量:1
标识
DOI:10.1021/acs.analchem.4c00527
摘要

Chemical derivatization is a widely employed strategy in metabolomics to enhance metabolite coverage by improving chromatographic behavior and increasing the ionization rates in mass spectroscopy (MS). However, derivatization might complicate MS data, posing challenges for data mining due to the lack of a corresponding benchmark database. To address this issue, we developed a triple-dimensional combinatorial derivatization strategy for nontargeted metabolomics. This strategy utilizes three structurally similar derivatization reagents and is supported by MS-TDF software for accelerated data processing. Notably, simultaneous derivatization of specific metabolite functional groups in biological samples produced compounds with stable but distinct chromatographic retention times and mass numbers, facilitating discrimination by MS-TDF, an in-house MS data processing software. In this study, carbonyl analogues in human plasma were derivatized using a combination of three hydrazide-based derivatization reagents: 2-hydrazinopyridine, 2-hydrazino-5-methylpyridine, and 2-hydrazino-5-cyanopyridine (6-hydrazinonicotinonitrile). This approach was applied to identify potential carbonyl biomarkers in lung cancer. Analysis and validation of human plasma samples demonstrated that our strategy improved the recognition accuracy of metabolites and reduced the risk of false positives, providing a useful method for nontargeted metabolomics studies. The MATLAB code for MS-TDF is available on GitHub at https://github.com/CaixiaYuan/MS-TDF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助wulanshu采纳,获得10
1秒前
香蕉觅云应助随遇而安采纳,获得10
1秒前
李爱国应助常常采纳,获得10
1秒前
Orange应助star采纳,获得10
1秒前
1秒前
2秒前
2秒前
科研通AI6应助CHENJINXI采纳,获得10
2秒前
悦耳人生发布了新的文献求助10
2秒前
王多肉发布了新的文献求助10
3秒前
3秒前
科研通AI6应助555采纳,获得10
3秒前
4秒前
陈影完成签到,获得积分10
4秒前
满意白开水完成签到,获得积分10
5秒前
科研通AI6应助缥缈的水彤采纳,获得10
5秒前
redflower发布了新的文献求助10
5秒前
JamesPei应助王与可采纳,获得10
6秒前
科研通AI6应助壮观的可以采纳,获得10
6秒前
Li完成签到,获得积分20
6秒前
李健应助cjw采纳,获得10
7秒前
7秒前
xiaominza发布了新的文献求助30
7秒前
万能图书馆应助西瓜妹采纳,获得10
7秒前
粗暴的达发布了新的文献求助10
7秒前
科研通AI6应助风中泰坦采纳,获得10
8秒前
8秒前
彭于晏应助长风采纳,获得10
8秒前
依克完成签到,获得积分10
8秒前
8秒前
8秒前
cccat发布了新的文献求助50
9秒前
格林维度关注了科研通微信公众号
9秒前
领导范儿应助忘的澜采纳,获得10
9秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905