Strategy to Empower Nontargeted Metabolomics by Triple-Dimensional Combinatorial Derivatization with MS-TDF Software

化学 衍生化 代谢组学 酰肼 代谢物 试剂 组合化学 气相色谱-质谱法 色谱法 质谱法 有机化学 生物化学
作者
Caixia Yuan,Ying Jin,Hairong Zhang,Simian Chen,Jiajin Yi,Qiang Xie,Jiyang Dong,Caisheng Wu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (19): 7634-7642
标识
DOI:10.1021/acs.analchem.4c00527
摘要

Chemical derivatization is a widely employed strategy in metabolomics to enhance metabolite coverage by improving chromatographic behavior and increasing the ionization rates in mass spectroscopy (MS). However, derivatization might complicate MS data, posing challenges for data mining due to the lack of a corresponding benchmark database. To address this issue, we developed a triple-dimensional combinatorial derivatization strategy for nontargeted metabolomics. This strategy utilizes three structurally similar derivatization reagents and is supported by MS-TDF software for accelerated data processing. Notably, simultaneous derivatization of specific metabolite functional groups in biological samples produced compounds with stable but distinct chromatographic retention times and mass numbers, facilitating discrimination by MS-TDF, an in-house MS data processing software. In this study, carbonyl analogues in human plasma were derivatized using a combination of three hydrazide-based derivatization reagents: 2-hydrazinopyridine, 2-hydrazino-5-methylpyridine, and 2-hydrazino-5-cyanopyridine (6-hydrazinonicotinonitrile). This approach was applied to identify potential carbonyl biomarkers in lung cancer. Analysis and validation of human plasma samples demonstrated that our strategy improved the recognition accuracy of metabolites and reduced the risk of false positives, providing a useful method for nontargeted metabolomics studies. The MATLAB code for MS-TDF is available on GitHub at https://github.com/CaixiaYuan/MS-TDF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助喜悦的秋柔采纳,获得10
1秒前
kksk发布了新的文献求助20
1秒前
fanfan完成签到 ,获得积分10
1秒前
kk完成签到,获得积分10
1秒前
caltrate515完成签到,获得积分10
2秒前
EED关闭了EED文献求助
5秒前
充电宝应助caltrate515采纳,获得10
6秒前
小李发布了新的文献求助20
6秒前
酷波er应助踏实的丝采纳,获得10
6秒前
supertkeb完成签到,获得积分10
7秒前
核桃发布了新的文献求助10
8秒前
10秒前
小林家的绒绒兔完成签到,获得积分10
10秒前
修管子完成签到,获得积分10
11秒前
13秒前
13秒前
bkagyin应助七堇采纳,获得10
14秒前
14秒前
塞西尔发布了新的文献求助10
14秒前
15秒前
Ava应助Lenacici采纳,获得10
15秒前
JW完成签到,获得积分10
15秒前
ll发布了新的文献求助10
15秒前
SHTS完成签到,获得积分10
17秒前
ting发布了新的文献求助10
17秒前
善学以致用应助小杜在此采纳,获得10
17秒前
oldblack发布了新的文献求助10
17秒前
郑方形发布了新的文献求助10
18秒前
18秒前
18秒前
北执完成签到,获得积分10
19秒前
荔枝多酚完成签到,获得积分10
19秒前
20秒前
Hello应助kk子采纳,获得10
21秒前
22秒前
22秒前
77完成签到,获得积分10
22秒前
zhangyu应助塞西尔采纳,获得10
23秒前
称心不尤发布了新的文献求助10
23秒前
YZzzJ发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496