已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep residual neural network model for synchronous motor fault diagnostics

残余物 计算机科学 人工神经网络 断层(地质) 人工智能 算法 地质学 地震学
作者
S. Ida Evangeline,S. Darwin,E. Fantin Irudaya Raj
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:: 111683-111683 被引量:3
标识
DOI:10.1016/j.asoc.2024.111683
摘要

Synchronous motors play a significant role in a wide range of industrial applications. Their reliable operation is paramount. Any faults in synchronous motors can lead to costly downtime, decreased productivity, and potential safety hazards. By accurately diagnosing and classifying faults, we can proactively address issues before they escalate, ensuring the smooth operation of synchronous motors and minimizing the risk of equipment failure. The accurate diagnosis and fault detection in synchronous motors pose a significant challenge in their operation and maintenance. In the existing models, the feature data at various depths are not thoroughly extracted to maximize their feature extraction capability. Additionally, they employ a single support vector machine to make the final decision on the output. The single support vector machine may not consistently produce more accurate outcomes. Therefore, this paper proposes a novel fault diagnosis model based on a deep residual neural network and multiple support vector machines to diagnose mechanical and electrical faults of synchronous motors. The proposed model improves upon existing fault diagnosis models in two key aspects. Firstly, by employing a deep neural network, the model is able to effectively process and extract fault features from the motor fault dataset, capturing more nuanced information that may be missed by existing models. Secondly, the use of multiple support vector machines enhances the decision-making capability of the model, allowing for more accurate fault diagnosis. By combining these two aspects, the proposed model achieves superior diagnostic performance compared to single support vector machine-based models. Our proposed model has been rigorously evaluated using mechanical and electrical fault datasets, and the results of experimental tests clearly demonstrate its superior diagnostic performance when compared to existing fault diagnosis models. The synergy of deep neural networks and multiple support vector machines not only improves fault detection accuracy but also enhances the robustness and generalizability of the model, making it a valuable tool for real-world industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChenyuTian发布了新的文献求助10
1秒前
优美飞薇发布了新的文献求助10
1秒前
Alex发布了新的文献求助10
1秒前
1秒前
Xiang Li发布了新的文献求助10
2秒前
3秒前
4秒前
haikuotian应助蔬菜人采纳,获得20
4秒前
6秒前
8秒前
yanxin发布了新的文献求助10
8秒前
su完成签到,获得积分10
9秒前
10秒前
Orange应助徐若楠采纳,获得10
10秒前
10秒前
刻苦的艳完成签到,获得积分10
11秒前
zzhang发布了新的文献求助10
11秒前
13秒前
15秒前
刻苦的艳发布了新的文献求助10
15秒前
doctorlee发布了新的文献求助10
16秒前
阳光皮带发布了新的文献求助10
16秒前
充电宝应助要了解采纳,获得10
18秒前
小二郎应助毛毛采纳,获得10
18秒前
18秒前
积极的香菇完成签到 ,获得积分10
19秒前
英俊的铭应助任性的宛秋采纳,获得10
19秒前
Hello应助yanxin采纳,获得10
19秒前
21秒前
22秒前
24秒前
zjkzh完成签到 ,获得积分10
24秒前
happyscn发布了新的文献求助10
25秒前
ChenyuTian发布了新的文献求助10
25秒前
Alex发布了新的文献求助10
26秒前
26秒前
27秒前
28秒前
CipherSage应助栗子采纳,获得10
29秒前
JamesPei应助优美飞薇采纳,获得10
30秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Free Will in the Flesh 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081394
求助须知:如何正确求助?哪些是违规求助? 2734111
关于积分的说明 7531744
捐赠科研通 2383535
什么是DOI,文献DOI怎么找? 1263852
科研通“疑难数据库(出版商)”最低求助积分说明 612440
版权声明 597560