已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction model based on artificial intelligence for identifying risk of coronary atherosclerotic heart disease in computed tomography

冠心病 计算机断层摄影术 心脏病学 内科学 医学 人工智能 计算机科学 放射科
作者
Jiqun Chen,Shitao Song,Rui Zhuo
出处
期刊:Journal of Radiation Research and Applied Sciences [Informa]
卷期号:17 (2): 100930-100930
标识
DOI:10.1016/j.jrras.2024.100930
摘要

To analyze the application value of artificial intelligence (AI) in coronary computed tomography angiography (CCTA) image processing and diagnosis of coronary atherosclerotic heart disease (CHD). A total of 80 patients with suspected CHD in our hospital were selected for CCTA examination and blood lipid examination. The convolutional neural networks (CNN) model of coronary artery plaque detection was constructed, and the data set was randomly divided into training set and test set after pretreatment of lipid characteristics and image characteristics. The prediction efficiency and accuracy of the model were evaluated. In the data set, the lipid indexes LDL-C, TC, and TG of patients in the CHD group were significantly higher than those in the Non-CHD group (P < 0.05). The average processing and diagnosis time of the AI model was (187.19 ± 18.79) s, which was significantly shorter than the average time of doctors (989.07 ± 50.40) s, and the difference was statistically significant (P < 0.05). There was no significant difference in the detection of calcified plaque, non-calcified plaque, and mixed plaque between doctors and AI models (P > 0.05). However, 5 plaques were misdiagnosed in the AI model (3.38%). The area under the curve (AUC) value of the CNN recognition model-based AI and manual recognition of doctors for the CHD were 0.870 (95% CI: 0.698–0.931) and 0.870 (95% CI: 0.691–0.926) (P < 0.001). AI integrated with lipid parameters has certain clinical value in CCTA image processing efficiency and plaque diagnosis, and can be used as an effective auxiliary tool to analyze and diagnose CHD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蛙蛙完成签到,获得积分10
2秒前
科研通AI6应助ayintree采纳,获得10
3秒前
5秒前
5秒前
6秒前
充电宝应助自由的冬易采纳,获得10
10秒前
郭焱焓发布了新的文献求助10
10秒前
小袁完成签到 ,获得积分10
10秒前
隐形路灯发布了新的文献求助10
11秒前
11秒前
华仔应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得50
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
艺术家完成签到 ,获得积分10
13秒前
14秒前
兰兰完成签到 ,获得积分10
15秒前
lebron发布了新的文献求助10
16秒前
寒冷芝完成签到 ,获得积分10
18秒前
teadan发布了新的文献求助10
18秒前
20秒前
21秒前
huangxin完成签到,获得积分10
23秒前
Re完成签到,获得积分10
24秒前
搜集达人应助六沉采纳,获得10
26秒前
田様应助村里的山水采纳,获得10
27秒前
Theone发布了新的文献求助30
28秒前
28秒前
29秒前
郭焱焓完成签到,获得积分20
30秒前
HanlinLiu完成签到,获得积分10
32秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449524
求助须知:如何正确求助?哪些是违规求助? 4557576
关于积分的说明 14264395
捐赠科研通 4480697
什么是DOI,文献DOI怎么找? 2454510
邀请新用户注册赠送积分活动 1445294
关于科研通互助平台的介绍 1421031