亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction model based on artificial intelligence for identifying risk of coronary atherosclerotic heart disease in computed tomography

冠心病 计算机断层摄影术 心脏病学 内科学 医学 人工智能 计算机科学 放射科
作者
Jiqun Chen,Shitao Song,Rui Zhuo
出处
期刊:Journal of Radiation Research and Applied Sciences [Informa]
卷期号:17 (2): 100930-100930
标识
DOI:10.1016/j.jrras.2024.100930
摘要

To analyze the application value of artificial intelligence (AI) in coronary computed tomography angiography (CCTA) image processing and diagnosis of coronary atherosclerotic heart disease (CHD). A total of 80 patients with suspected CHD in our hospital were selected for CCTA examination and blood lipid examination. The convolutional neural networks (CNN) model of coronary artery plaque detection was constructed, and the data set was randomly divided into training set and test set after pretreatment of lipid characteristics and image characteristics. The prediction efficiency and accuracy of the model were evaluated. In the data set, the lipid indexes LDL-C, TC, and TG of patients in the CHD group were significantly higher than those in the Non-CHD group (P < 0.05). The average processing and diagnosis time of the AI model was (187.19 ± 18.79) s, which was significantly shorter than the average time of doctors (989.07 ± 50.40) s, and the difference was statistically significant (P < 0.05). There was no significant difference in the detection of calcified plaque, non-calcified plaque, and mixed plaque between doctors and AI models (P > 0.05). However, 5 plaques were misdiagnosed in the AI model (3.38%). The area under the curve (AUC) value of the CNN recognition model-based AI and manual recognition of doctors for the CHD were 0.870 (95% CI: 0.698–0.931) and 0.870 (95% CI: 0.691–0.926) (P < 0.001). AI integrated with lipid parameters has certain clinical value in CCTA image processing efficiency and plaque diagnosis, and can be used as an effective auxiliary tool to analyze and diagnose CHD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大方明杰发布了新的文献求助10
5秒前
5秒前
7秒前
16秒前
19秒前
26秒前
59秒前
1分钟前
1分钟前
1分钟前
Cherish发布了新的文献求助10
1分钟前
Tanya完成签到 ,获得积分10
1分钟前
manjusaka发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
大模型应助务实的罡采纳,获得10
2分钟前
2分钟前
桃李春风一杯酒完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
manjusaka发布了新的文献求助10
2分钟前
彭于晏应助wyx采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
JamesPei应助wyx采纳,获得10
3分钟前
duan完成签到 ,获得积分10
3分钟前
李颜龙完成签到,获得积分10
3分钟前
桃子完成签到 ,获得积分10
3分钟前
3分钟前
wyx发布了新的文献求助10
3分钟前
陶醉的烤鸡完成签到 ,获得积分10
3分钟前
4分钟前
牛牛完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
ATX760发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454959
求助须知:如何正确求助?哪些是违规求助? 4562235
关于积分的说明 14284961
捐赠科研通 4486104
什么是DOI,文献DOI怎么找? 2457241
邀请新用户注册赠送积分活动 1447850
关于科研通互助平台的介绍 1423075