Prediction model based on artificial intelligence for identifying risk of coronary atherosclerotic heart disease in computed tomography

冠心病 计算机断层摄影术 心脏病学 内科学 医学 人工智能 计算机科学 放射科
作者
Jiqun Chen,Shitao Song,Rui Zhuo
出处
期刊:Journal of Radiation Research and Applied Sciences [Informa]
卷期号:17 (2): 100930-100930
标识
DOI:10.1016/j.jrras.2024.100930
摘要

To analyze the application value of artificial intelligence (AI) in coronary computed tomography angiography (CCTA) image processing and diagnosis of coronary atherosclerotic heart disease (CHD). A total of 80 patients with suspected CHD in our hospital were selected for CCTA examination and blood lipid examination. The convolutional neural networks (CNN) model of coronary artery plaque detection was constructed, and the data set was randomly divided into training set and test set after pretreatment of lipid characteristics and image characteristics. The prediction efficiency and accuracy of the model were evaluated. In the data set, the lipid indexes LDL-C, TC, and TG of patients in the CHD group were significantly higher than those in the Non-CHD group (P < 0.05). The average processing and diagnosis time of the AI model was (187.19 ± 18.79) s, which was significantly shorter than the average time of doctors (989.07 ± 50.40) s, and the difference was statistically significant (P < 0.05). There was no significant difference in the detection of calcified plaque, non-calcified plaque, and mixed plaque between doctors and AI models (P > 0.05). However, 5 plaques were misdiagnosed in the AI model (3.38%). The area under the curve (AUC) value of the CNN recognition model-based AI and manual recognition of doctors for the CHD were 0.870 (95% CI: 0.698–0.931) and 0.870 (95% CI: 0.691–0.926) (P < 0.001). AI integrated with lipid parameters has certain clinical value in CCTA image processing efficiency and plaque diagnosis, and can be used as an effective auxiliary tool to analyze and diagnose CHD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助威武谷南采纳,获得10
1秒前
2秒前
李大姐发布了新的文献求助10
2秒前
3秒前
3秒前
jarenthar完成签到 ,获得积分10
3秒前
李7完成签到,获得积分10
3秒前
烟花应助心随以动采纳,获得10
4秒前
江风海韵完成签到,获得积分10
5秒前
情怀应助AKYDXS采纳,获得10
6秒前
曾经二娘发布了新的文献求助10
7秒前
小陈医师完成签到,获得积分10
7秒前
来者完成签到,获得积分10
7秒前
土拨鼠发布了新的文献求助10
8秒前
财来发布了新的文献求助30
8秒前
8秒前
许容完成签到,获得积分10
8秒前
9秒前
13秒前
buno完成签到,获得积分10
13秒前
香风智乃完成签到 ,获得积分10
14秒前
LYS发布了新的文献求助10
14秒前
16秒前
16秒前
威武谷南完成签到,获得积分20
16秒前
Ava应助断罪采纳,获得10
20秒前
威武谷南发布了新的文献求助10
20秒前
喵喵完成签到 ,获得积分10
21秒前
CodeCraft应助李大姐采纳,获得10
21秒前
眯眯眼的世界完成签到,获得积分10
22秒前
今天开心了吗完成签到 ,获得积分10
22秒前
一亿发布了新的文献求助10
22秒前
科研通AI2S应助pupu采纳,获得10
23秒前
搜集达人应助LYS采纳,获得10
23秒前
wanci应助财来采纳,获得10
23秒前
25秒前
26秒前
所所应助夏青荷采纳,获得10
26秒前
大胆的远望完成签到,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136300
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7781050
捐赠科研通 2443321
什么是DOI,文献DOI怎么找? 1299108
科研通“疑难数据库(出版商)”最低求助积分说明 625345
版权声明 600922