Prediction model based on artificial intelligence for identifying risk of coronary atherosclerotic heart disease in computed tomography

冠心病 计算机断层摄影术 心脏病学 内科学 医学 人工智能 计算机科学 放射科
作者
Jiqun Chen,Shitao Song,Rui Zhuo
出处
期刊:Journal of Radiation Research and Applied Sciences [Elsevier BV]
卷期号:17 (2): 100930-100930
标识
DOI:10.1016/j.jrras.2024.100930
摘要

To analyze the application value of artificial intelligence (AI) in coronary computed tomography angiography (CCTA) image processing and diagnosis of coronary atherosclerotic heart disease (CHD). A total of 80 patients with suspected CHD in our hospital were selected for CCTA examination and blood lipid examination. The convolutional neural networks (CNN) model of coronary artery plaque detection was constructed, and the data set was randomly divided into training set and test set after pretreatment of lipid characteristics and image characteristics. The prediction efficiency and accuracy of the model were evaluated. In the data set, the lipid indexes LDL-C, TC, and TG of patients in the CHD group were significantly higher than those in the Non-CHD group (P < 0.05). The average processing and diagnosis time of the AI model was (187.19 ± 18.79) s, which was significantly shorter than the average time of doctors (989.07 ± 50.40) s, and the difference was statistically significant (P < 0.05). There was no significant difference in the detection of calcified plaque, non-calcified plaque, and mixed plaque between doctors and AI models (P > 0.05). However, 5 plaques were misdiagnosed in the AI model (3.38%). The area under the curve (AUC) value of the CNN recognition model-based AI and manual recognition of doctors for the CHD were 0.870 (95% CI: 0.698–0.931) and 0.870 (95% CI: 0.691–0.926) (P < 0.001). AI integrated with lipid parameters has certain clinical value in CCTA image processing efficiency and plaque diagnosis, and can be used as an effective auxiliary tool to analyze and diagnose CHD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助zs采纳,获得10
刚刚
自由能完成签到,获得积分20
2秒前
2秒前
Torment发布了新的文献求助10
2秒前
2秒前
阿楠完成签到,获得积分10
5秒前
6秒前
orixero应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得50
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
汉堡包应助鱼香肉丝采纳,获得10
10秒前
10秒前
十分喜欢完成签到,获得积分10
11秒前
少少完成签到 ,获得积分10
13秒前
鱼鱼发布了新的文献求助10
14秒前
最初的远方完成签到,获得积分10
14秒前
17秒前
量子星尘发布了新的文献求助30
17秒前
20秒前
漂亮采波发布了新的文献求助10
22秒前
22秒前
认真的映安完成签到,获得积分10
24秒前
鱼香肉丝发布了新的文献求助10
24秒前
杨三多发布了新的文献求助10
27秒前
28秒前
颖中竹子完成签到,获得积分10
29秒前
酷波er应助如风采纳,获得10
30秒前
qqqqq完成签到,获得积分10
31秒前
小酥饼完成签到,获得积分10
33秒前
852应助弓长张采纳,获得10
33秒前
大萍子发布了新的文献求助10
34秒前
36秒前
兼得完成签到,获得积分10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954469
求助须知:如何正确求助?哪些是违规求助? 3500461
关于积分的说明 11099572
捐赠科研通 3230989
什么是DOI,文献DOI怎么找? 1786217
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801713