Spatiotemporal Measurement of Charge at Ceramic Substrate–Silicone Gel Interface in Medium-Voltage Power Modules

材料科学 陶瓷 基质(水族馆) 硅酮 接口(物质) 电压 光电子学 电气工程 电荷(物理) 功率(物理) 电子工程 复合材料 工程类 物理 海洋学 毛细管数 量子力学 毛细管作用 地质学
作者
Kaixuan Li,Boya Zhang,Ziyue Yang,Xinyu Jiang,Minghan Yao,Xingwen Li
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (12): 15360-15375 被引量:5
标识
DOI:10.1109/tpel.2024.3403480
摘要

With the proliferation of high-voltage, high-power density devices, insulation failure has emerged as a latent hazard in power modules. Notably, breakdown along ceramic substrate–silicone gel interfaces is a typical insulation failure process in power modules, necessitating particular attention and elucidation. Specifically, the charge movement characteristics that play a pivotal role in the failure process should be expounded. However, the lack of characterization methods currently renders these characteristics unclear. In this study, we proposed a method for the spatiotemporal measurement of the interfacial charge density between a direct-bonded copper ceramic and silicone gel. A reflective optical system was developed based on the Pockels effect to enable the measurement of nontransparent samples, such as encapsulation structures, in power modules. The measurement range of the optical system is ±20 kV. The interfacial charge density was calculated using an inversion algorithm. Charge dynamics at inaccessible interfaces were described for the first time. The threshold is ∼100 pC/mm 2 with 10-μs temporal and 27-μm spatial resolution. Compared with traditional methods, the proposed method stands out for its superior spatiotemporal dimensionality. Besides, it enables visual measurements, making it a solution for monitoring insulation status and diagnosing insulation defects specifically for encapsulation structures in power modules. The proposed method can help engineers improve the insulation design of power modules. This paper is accompanied by a video demonstrating the dynamic process of discharge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗大大发布了新的文献求助10
刚刚
研友_VZG7GZ应助liuuuuu采纳,获得10
1秒前
1秒前
雨齐完成签到,获得积分10
1秒前
李明泰完成签到,获得积分10
3秒前
酷波er应助yangjun采纳,获得10
3秒前
3秒前
鸡蛋完成签到 ,获得积分10
4秒前
zhou123432完成签到,获得积分20
4秒前
杜萌萌完成签到,获得积分10
5秒前
李健应助十一嘞采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
zcl应助科研通管家采纳,获得20
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
浮生若梦应助科研通管家采纳,获得10
7秒前
浮生若梦应助科研通管家采纳,获得10
7秒前
浮生若梦应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得30
7秒前
8秒前
善学以致用应助康康采纳,获得10
8秒前
王欣茹发布了新的文献求助10
8秒前
海绵宝宝发布了新的文献求助10
9秒前
10秒前
风中黎昕完成签到 ,获得积分10
11秒前
11秒前
11秒前
zhongying发布了新的文献求助10
12秒前
Dr_JennyZ完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
海绵宝宝完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262687
求助须知:如何正确求助?哪些是违规求助? 4423535
关于积分的说明 13770052
捐赠科研通 4298274
什么是DOI,文献DOI怎么找? 2358345
邀请新用户注册赠送积分活动 1354694
关于科研通互助平台的介绍 1315914