Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization

超参数 光伏系统 机器学习 计算机科学 算法 优化算法 人工智能 工程类 数学优化 数学 电气工程
作者
Muhammad Faizan Tahir,Muhammad Zain Yousaf,Anthony Tzes,Mohamed Shawky El Moursi,Tarek H. M. EL-Fouly
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:200: 114581-114581 被引量:30
标识
DOI:10.1016/j.rser.2024.114581
摘要

Solar photovoltaic power generation accurate prediction is crucial for optimizing the efficiency and reliability of solar power plants. This research work focuses on predicting photovoltaic power using various machine learning algorithms, including ensemble of regression trees, support vector machine, Gaussian process regression, and artificial neural networks. Performance of these algorithms is further improved through hyperparameter optimization using Bayesian optimization and random search optimizers. Hourly data with a 30-min temporal resolution for an entire year is collected from a 10 MW Masdar solar photovoltaic project based in the United Arab Emirates. Photovoltaic historical power curve is generated using the System Advisor Model software, and to ensure data consistency, the collected dataset is normalized, with the interrelationships among variables computed using the Pearson relation coefficient. The results substantiate that Gaussian process regression demonstrates the best performance (lowest prediction errors) in terms of computing predicted solar photovoltaic generation power, followed by artificial neural networks, ensemble of regression trees, and the support vector machine across both optimizers. Concerning hyperparameter optimization, Bayesian optimization -based model outperformed support vector machine, Gaussian process regression, and artificial neural networks algorithms, except for the ensemble of regression trees. The proposed work contributes to the advancement of solar photovoltaic power prediction by combining the power of machine learning algorithms with hyperparameter optimization techniques. Additionally, the results emphasize the importance of hyperparameter optimization in enhancing machine learning model performance, providing valuable insights into adaptability and accuracy across varying seasonal conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小傅完成签到,获得积分10
刚刚
ddjjhh发布了新的文献求助10
2秒前
Jasper应助ss采纳,获得10
2秒前
清爽访风完成签到,获得积分10
2秒前
求助人员发布了新的文献求助20
3秒前
3秒前
无花果应助zzy加油采纳,获得10
3秒前
科研通AI6应助苹果不平采纳,获得10
4秒前
5秒前
浮游应助不下雨采纳,获得10
6秒前
乐乐应助奇点采纳,获得10
7秒前
7秒前
7秒前
江树远完成签到 ,获得积分10
9秒前
温柔凌晴完成签到,获得积分10
9秒前
9秒前
Na发布了新的文献求助80
11秒前
温柔凌晴发布了新的文献求助10
11秒前
11秒前
科研通AI6应助chenming采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
英俊的铭应助203采纳,获得10
13秒前
14秒前
安之关注了科研通微信公众号
14秒前
linclee完成签到,获得积分10
15秒前
16秒前
jaibin_zong完成签到,获得积分10
16秒前
爆米花应助缓慢元枫采纳,获得10
16秒前
lll发布了新的文献求助10
17秒前
浮游应助夜莺采纳,获得10
18秒前
kita发布了新的文献求助10
18秒前
猪猪hero发布了新的文献求助10
18秒前
19秒前
TANG发布了新的文献求助10
19秒前
清爽访风发布了新的文献求助10
20秒前
Xieyusen完成签到,获得积分10
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050917
求助须知:如何正确求助?哪些是违规求助? 4278485
关于积分的说明 13336586
捐赠科研通 4093551
什么是DOI,文献DOI怎么找? 2240413
邀请新用户注册赠送积分活动 1247041
关于科研通互助平台的介绍 1176012