亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization

超参数 光伏系统 机器学习 计算机科学 算法 优化算法 人工智能 工程类 数学优化 数学 电气工程
作者
Muhammad Faizan Tahir,Muhammad Zain Yousaf,Anthony Tzes,Mohamed Shawky El Moursi,Tarek H. M. EL-Fouly
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:200: 114581-114581 被引量:30
标识
DOI:10.1016/j.rser.2024.114581
摘要

Solar photovoltaic power generation accurate prediction is crucial for optimizing the efficiency and reliability of solar power plants. This research work focuses on predicting photovoltaic power using various machine learning algorithms, including ensemble of regression trees, support vector machine, Gaussian process regression, and artificial neural networks. Performance of these algorithms is further improved through hyperparameter optimization using Bayesian optimization and random search optimizers. Hourly data with a 30-min temporal resolution for an entire year is collected from a 10 MW Masdar solar photovoltaic project based in the United Arab Emirates. Photovoltaic historical power curve is generated using the System Advisor Model software, and to ensure data consistency, the collected dataset is normalized, with the interrelationships among variables computed using the Pearson relation coefficient. The results substantiate that Gaussian process regression demonstrates the best performance (lowest prediction errors) in terms of computing predicted solar photovoltaic generation power, followed by artificial neural networks, ensemble of regression trees, and the support vector machine across both optimizers. Concerning hyperparameter optimization, Bayesian optimization -based model outperformed support vector machine, Gaussian process regression, and artificial neural networks algorithms, except for the ensemble of regression trees. The proposed work contributes to the advancement of solar photovoltaic power prediction by combining the power of machine learning algorithms with hyperparameter optimization techniques. Additionally, the results emphasize the importance of hyperparameter optimization in enhancing machine learning model performance, providing valuable insights into adaptability and accuracy across varying seasonal conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甘草三七完成签到,获得积分10
刚刚
Kryptonite完成签到,获得积分10
6秒前
大麦完成签到 ,获得积分10
34秒前
Kevin完成签到 ,获得积分10
35秒前
浮游应助耶耶粘豆包采纳,获得10
40秒前
49秒前
5k全完成签到 ,获得积分10
49秒前
59秒前
1分钟前
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
可爱丹彤发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
友好寻真发布了新的文献求助20
1分钟前
yuxia发布了新的文献求助10
1分钟前
默默襄发布了新的文献求助10
1分钟前
1分钟前
as发布了新的文献求助10
1分钟前
Qwer完成签到 ,获得积分10
1分钟前
隐形曼青应助默默襄采纳,获得10
1分钟前
丘比特应助yuxia采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
就是梦而已完成签到,获得积分10
2分钟前
窝窝窝书完成签到,获得积分10
2分钟前
2分钟前
仁爱的狗发布了新的文献求助10
2分钟前
2分钟前
仁爱的狗完成签到,获得积分10
2分钟前
housii完成签到,获得积分10
2分钟前
2分钟前
housii发布了新的文献求助10
2分钟前
勤奋丹萱完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302133
求助须知:如何正确求助?哪些是违规求助? 4449379
关于积分的说明 13848275
捐赠科研通 4335535
什么是DOI,文献DOI怎么找? 2380395
邀请新用户注册赠送积分活动 1375402
关于科研通互助平台的介绍 1341557