Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization

超参数 光伏系统 机器学习 计算机科学 算法 优化算法 人工智能 工程类 数学优化 数学 电气工程
作者
Muhammad Faizan Tahir,Muhammad Zain Yousaf,Anthony Tzes,Mohamed Shawky El Moursi,Tarek H. M. EL-Fouly
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:200: 114581-114581 被引量:30
标识
DOI:10.1016/j.rser.2024.114581
摘要

Solar photovoltaic power generation accurate prediction is crucial for optimizing the efficiency and reliability of solar power plants. This research work focuses on predicting photovoltaic power using various machine learning algorithms, including ensemble of regression trees, support vector machine, Gaussian process regression, and artificial neural networks. Performance of these algorithms is further improved through hyperparameter optimization using Bayesian optimization and random search optimizers. Hourly data with a 30-min temporal resolution for an entire year is collected from a 10 MW Masdar solar photovoltaic project based in the United Arab Emirates. Photovoltaic historical power curve is generated using the System Advisor Model software, and to ensure data consistency, the collected dataset is normalized, with the interrelationships among variables computed using the Pearson relation coefficient. The results substantiate that Gaussian process regression demonstrates the best performance (lowest prediction errors) in terms of computing predicted solar photovoltaic generation power, followed by artificial neural networks, ensemble of regression trees, and the support vector machine across both optimizers. Concerning hyperparameter optimization, Bayesian optimization -based model outperformed support vector machine, Gaussian process regression, and artificial neural networks algorithms, except for the ensemble of regression trees. The proposed work contributes to the advancement of solar photovoltaic power prediction by combining the power of machine learning algorithms with hyperparameter optimization techniques. Additionally, the results emphasize the importance of hyperparameter optimization in enhancing machine learning model performance, providing valuable insights into adaptability and accuracy across varying seasonal conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Function完成签到,获得积分10
1秒前
英俊的铭应助刻苦的如霜采纳,获得10
1秒前
聪明的战斗机完成签到,获得积分10
1秒前
haoxuan发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
asdfzxcv应助小柯采纳,获得30
3秒前
乂领域完成签到,获得积分10
3秒前
3秒前
wxxkx完成签到,获得积分10
3秒前
一水合羟基磷酸钙完成签到,获得积分10
4秒前
lucky_chen完成签到 ,获得积分10
4秒前
栗子发布了新的文献求助80
4秒前
Function发布了新的文献求助10
4秒前
小厂科研民工完成签到,获得积分10
4秒前
4秒前
若槻椋完成签到,获得积分10
4秒前
4秒前
云1077发布了新的文献求助10
4秒前
xiaoxx发布了新的文献求助30
4秒前
Orange应助凌奕添采纳,获得10
4秒前
无花果应助鱼鱼采纳,获得10
5秒前
阿白完成签到,获得积分10
5秒前
共享精神应助年年sci采纳,获得10
5秒前
5秒前
jjjoey完成签到,获得积分10
6秒前
RP-H完成签到,获得积分10
6秒前
标致的又亦完成签到,获得积分10
6秒前
6秒前
wuwu完成签到,获得积分10
6秒前
7秒前
Antonio完成签到 ,获得积分0
7秒前
月怜天天发布了新的文献求助10
7秒前
进击的PhD应助shang采纳,获得20
7秒前
7秒前
科研通AI2S应助sunlibiye采纳,获得10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647168
求助须知:如何正确求助?哪些是违规求助? 4773018
关于积分的说明 15038081
捐赠科研通 4805852
什么是DOI,文献DOI怎么找? 2570007
邀请新用户注册赠送积分活动 1526881
关于科研通互助平台的介绍 1485983