Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization

超参数 光伏系统 机器学习 计算机科学 算法 优化算法 人工智能 工程类 数学优化 数学 电气工程
作者
Muhammad Faizan Tahir,Muhammad Zain Yousaf,Anthony Tzes,Mohamed Shawky El Moursi,Tarek H. M. EL-Fouly
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:200: 114581-114581 被引量:15
标识
DOI:10.1016/j.rser.2024.114581
摘要

Solar photovoltaic power generation accurate prediction is crucial for optimizing the efficiency and reliability of solar power plants. This research work focuses on predicting photovoltaic power using various machine learning algorithms, including ensemble of regression trees, support vector machine, Gaussian process regression, and artificial neural networks. Performance of these algorithms is further improved through hyperparameter optimization using Bayesian optimization and random search optimizers. Hourly data with a 30-min temporal resolution for an entire year is collected from a 10 MW Masdar solar photovoltaic project based in the United Arab Emirates. Photovoltaic historical power curve is generated using the System Advisor Model software, and to ensure data consistency, the collected dataset is normalized, with the interrelationships among variables computed using the Pearson relation coefficient. The results substantiate that Gaussian process regression demonstrates the best performance (lowest prediction errors) in terms of computing predicted solar photovoltaic generation power, followed by artificial neural networks, ensemble of regression trees, and the support vector machine across both optimizers. Concerning hyperparameter optimization, Bayesian optimization -based model outperformed support vector machine, Gaussian process regression, and artificial neural networks algorithms, except for the ensemble of regression trees. The proposed work contributes to the advancement of solar photovoltaic power prediction by combining the power of machine learning algorithms with hyperparameter optimization techniques. Additionally, the results emphasize the importance of hyperparameter optimization in enhancing machine learning model performance, providing valuable insights into adaptability and accuracy across varying seasonal conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黑色土豆发布了新的文献求助10
刚刚
kong发布了新的文献求助10
刚刚
香蕉觅云应助bbh采纳,获得10
1秒前
今后应助bbh采纳,获得10
1秒前
丘比特应助bbh采纳,获得10
1秒前
小马甲应助bbh采纳,获得10
1秒前
kd完成签到,获得积分10
2秒前
文静湘发布了新的文献求助20
2秒前
3秒前
3秒前
Peveril完成签到,获得积分10
4秒前
lh23完成签到,获得积分10
5秒前
Owen应助落寞振家采纳,获得10
5秒前
传奇3应助kanwenxian采纳,获得10
5秒前
5秒前
Katherine发布了新的文献求助10
6秒前
落榜美术生完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
莫言发布了新的文献求助10
10秒前
moon发布了新的文献求助10
10秒前
帅气的璎完成签到,获得积分10
10秒前
非蛋白呼吸商完成签到,获得积分10
12秒前
533发布了新的文献求助10
12秒前
a雪橙发布了新的文献求助10
13秒前
13秒前
情怀应助wonder123采纳,获得10
13秒前
14秒前
万能图书馆应助明芬采纳,获得10
14秒前
小二郎应助默顿的笔记本采纳,获得10
15秒前
帅气的璎发布了新的文献求助10
17秒前
852应助biubiudididi采纳,获得10
19秒前
天天快乐应助533采纳,获得10
19秒前
鹹魚一條完成签到 ,获得积分10
19秒前
姜露萍发布了新的文献求助10
20秒前
Liufgui应助老板来杯冷咖啡采纳,获得10
20秒前
852应助飞快的夜天采纳,获得10
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176