亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Light&fast generative adversarial network for high-fidelity CT image synthesis of liver tumor

计算机科学 人工智能 鉴别器 模式识别(心理学) 特征(语言学) 构造(python库) 肝细胞癌 图像(数学) 肝肿瘤 深度学习 医学 内科学 电信 语言学 哲学 探测器 程序设计语言
作者
Zechen Zheng,Miao Wang,Chao Fan,Congqian Wang,Xuelei He,Xiaowei He
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:254: 108252-108252 被引量:9
标识
DOI:10.1016/j.cmpb.2024.108252
摘要

Hepatocellular carcinoma is a common disease with high mortality. Through deep learning methods to analyze HCC CT, the screening classification and prognosis model of HCC can be established, which further promotes the development of computer-aided diagnosis and treatment in the treatment of HCC. However, there are significant challenges in the actual establishment of HCC auxiliary diagnosis model due to data imbalance, especially for rare subtypes of HCC and underrepresented demographic groups. This study proposes a GAN model aimed at overcoming these obstacles and improving the accuracy of HCC auxiliary diagnosis. In order to generate liver and tumor images close to the real distribution. Firstly, we construct a new gradient transfer sampling module to improve the lack of texture details and excessive gradient transfer parameters of the deep model; Secondly, we construct an attention module with spatial and cross-channel feature extraction ability to improve the discriminator's ability to distinguish images; Finally, we design a new loss function for liver tumor imaging features to constrain the model to approach the real tumor features in iterations. In qualitative analysis, the images synthetic by our method closely resemble the real images in liver parenchyma, blood vessels, tumors, and other parts. In quantitative analysis, the optimal results of FID, PSNR, and SSIM are 75.73, 22.77, and 0.74, respectively. Furthermore, our experiments establish classification models for imbalanced data and enhanced data, resulting in an increase in accuracy rate by 21%–34%, an increase in AUC by 0.29 - 0.33, and an increase in specificity to 0.89. Our solution provides a variety of training data sources with low cost and high efficiency for the establishment of classification or prognostic models for imbalanced data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋灯泡完成签到,获得积分20
刚刚
chaichi完成签到,获得积分10
刚刚
埋头赶路完成签到,获得积分10
刚刚
劉浏琉完成签到,获得积分10
1秒前
2秒前
2秒前
合一海盗完成签到,获得积分10
2秒前
Hello应助生动友容采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
VDC应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
322628发布了新的文献求助10
4秒前
幸福的靳完成签到,获得积分10
7秒前
赘婿应助zw采纳,获得10
8秒前
Liz完成签到,获得积分10
9秒前
CodeCraft应助pepper采纳,获得10
11秒前
CLZ完成签到 ,获得积分10
12秒前
甜蜜舞蹈完成签到 ,获得积分10
13秒前
13秒前
tejing1158完成签到,获得积分10
15秒前
17秒前
17秒前
小绵羊发布了新的文献求助10
18秒前
zyl完成签到,获得积分10
19秒前
臻酒发布了新的文献求助10
19秒前
20秒前
生动友容发布了新的文献求助10
21秒前
22秒前
22秒前
adsdas465发布了新的文献求助10
23秒前
任性的羽毛完成签到 ,获得积分10
25秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
11发布了新的文献求助10
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763611
求助须知:如何正确求助?哪些是违规求助? 5543116
关于积分的说明 15405167
捐赠科研通 4899313
什么是DOI,文献DOI怎么找? 2635467
邀请新用户注册赠送积分活动 1583538
关于科研通互助平台的介绍 1538681