Light&Fast Generative Adversarial Network for high-fidelity CT image synthesis of liver tumor

计算机科学 人工智能 鉴别器 模式识别(心理学) 特征(语言学) 构造(python库) 肝细胞癌 图像(数学) 肝肿瘤 深度学习 医学 内科学 电信 语言学 哲学 探测器 程序设计语言
作者
Zechen Zheng,Miao Wang,Chao Fan,Congqian Wang,Xuelei He,Xiaowei He
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:254: 108252-108252 被引量:5
标识
DOI:10.1016/j.cmpb.2024.108252
摘要

Hepatocellular carcinoma is a common disease with high mortality. Through deep learning methods to analyze HCC CT, the screening classification and prognosis model of HCC can be established, which further promotes the development of computer-aided diagnosis and treatment in the treatment of HCC. However, there are significant challenges in the actual establishment of HCC auxiliary diagnosis model due to data imbalance, especially for rare subtypes of HCC and underrepresented demographic groups. This study proposes a GAN model aimed at overcoming these obstacles and improving the accuracy of HCC auxiliary diagnosis. In order to generate liver and tumor images close to the real distribution. Firstly, we construct a new gradient transfer sampling module to improve the lack of texture details and excessive gradient transfer parameters of the deep model; Secondly, we construct an attention module with spatial and cross-channel feature extraction ability to improve the discriminator's ability to distinguish images; Finally, we design a new loss function for liver tumor imaging features to constrain the model to approach the real tumor features in iterations. In qualitative analysis, the images synthetic by our method closely resemble the real images in liver parenchyma, blood vessels, tumors, and other parts. In quantitative analysis, the optimal results of FID, PSNR, and SSIM are 75.73, 22.77, and 0.74, respectively. Furthermore, our experiments establish classification models for imbalanced data and enhanced data, resulting in an increase in accuracy rate by 21%–34%, an increase in AUC by 0.29 - 0.33, and an increase in specificity to 0.89. Our solution provides a variety of training data sources with low cost and high efficiency for the establishment of classification or prognostic models for imbalanced data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助奶油泡fu采纳,获得10
刚刚
Camellia完成签到,获得积分10
刚刚
阿越应助江月年采纳,获得10
1秒前
1秒前
1秒前
Hello应助嗡嗡嗡采纳,获得10
1秒前
yzbbb发布了新的文献求助10
2秒前
TRY完成签到,获得积分10
2秒前
CipherSage应助眯眯眼的笑采纳,获得10
2秒前
奇拉维特完成签到 ,获得积分10
2秒前
小叶子发布了新的文献求助10
2秒前
2秒前
诚心的砖头完成签到,获得积分20
3秒前
3秒前
科研通AI6应助小羊医生采纳,获得10
3秒前
4秒前
领导范儿应助在写了采纳,获得10
4秒前
4秒前
4秒前
俄而完成签到 ,获得积分10
4秒前
4秒前
成就的迎夏完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
lilac完成签到,获得积分10
7秒前
mogeko完成签到,获得积分10
7秒前
奋斗若风发布了新的文献求助10
7秒前
明亮雨真发布了新的文献求助10
8秒前
money完成签到 ,获得积分10
8秒前
8秒前
轻松晓曼发布了新的文献求助10
8秒前
8秒前
疯狂的寻绿完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
科研通AI6应助油条狗采纳,获得10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615406
求助须知:如何正确求助?哪些是违规求助? 4019207
关于积分的说明 12441329
捐赠科研通 3702203
什么是DOI,文献DOI怎么找? 2041500
邀请新用户注册赠送积分活动 1074170
科研通“疑难数据库(出版商)”最低求助积分说明 957802