Light&Fast Generative Adversarial Network for high-fidelity CT image synthesis of liver tumor

计算机科学 人工智能 鉴别器 模式识别(心理学) 特征(语言学) 构造(python库) 肝细胞癌 图像(数学) 肝肿瘤 深度学习 医学 内科学 哲学 程序设计语言 探测器 电信 语言学
作者
Zechen Zheng,Miao Wang,Chao Fan,Congqian Wang,Xuelei He,Xiaowei He
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:254: 108252-108252 被引量:4
标识
DOI:10.1016/j.cmpb.2024.108252
摘要

Hepatocellular carcinoma is a common disease with high mortality. Through deep learning methods to analyze HCC CT, the screening classification and prognosis model of HCC can be established, which further promotes the development of computer-aided diagnosis and treatment in the treatment of HCC. However, there are significant challenges in the actual establishment of HCC auxiliary diagnosis model due to data imbalance, especially for rare subtypes of HCC and underrepresented demographic groups. This study proposes a GAN model aimed at overcoming these obstacles and improving the accuracy of HCC auxiliary diagnosis. In order to generate liver and tumor images close to the real distribution. Firstly, we construct a new gradient transfer sampling module to improve the lack of texture details and excessive gradient transfer parameters of the deep model; Secondly, we construct an attention module with spatial and cross-channel feature extraction ability to improve the discriminator's ability to distinguish images; Finally, we design a new loss function for liver tumor imaging features to constrain the model to approach the real tumor features in iterations. In qualitative analysis, the images synthetic by our method closely resemble the real images in liver parenchyma, blood vessels, tumors, and other parts. In quantitative analysis, the optimal results of FID, PSNR, and SSIM are 75.73, 22.77, and 0.74, respectively. Furthermore, our experiments establish classification models for imbalanced data and enhanced data, resulting in an increase in accuracy rate by 21%–34%, an increase in AUC by 0.29 - 0.33, and an increase in specificity to 0.89. Our solution provides a variety of training data sources with low cost and high efficiency for the establishment of classification or prognostic models for imbalanced data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
深情安青应助大眼怪采纳,获得10
2秒前
3秒前
4秒前
脑洞疼应助61采纳,获得10
5秒前
香蕉觅云应助张建采纳,获得10
7秒前
Tianping发布了新的文献求助10
8秒前
111发布了新的文献求助10
8秒前
8秒前
23lk发布了新的文献求助10
9秒前
riceyellow完成签到,获得积分10
9秒前
10秒前
10秒前
yaaaaajie完成签到,获得积分10
11秒前
Heng发布了新的文献求助10
13秒前
wefor完成签到 ,获得积分10
13秒前
123发布了新的文献求助20
13秒前
zuo完成签到,获得积分10
14秒前
nenoaowu发布了新的文献求助30
14秒前
polaris发布了新的文献求助10
15秒前
小狗说好运来完成签到 ,获得积分10
15秒前
ll发布了新的文献求助10
15秒前
CipherSage应助InaZheng采纳,获得30
16秒前
16秒前
丘比特应助寒塘采纳,获得10
16秒前
南丁格尔完成签到,获得积分10
16秒前
yx_cheng应助箫笛采纳,获得10
16秒前
18秒前
18秒前
CC发布了新的文献求助10
19秒前
wanci应助23lk采纳,获得10
19秒前
polaris完成签到,获得积分10
20秒前
22秒前
墙头的草发布了新的文献求助10
22秒前
幽默飞雪完成签到 ,获得积分10
22秒前
22秒前
Owen应助yaaaaajie采纳,获得10
25秒前
大眼怪发布了新的文献求助10
25秒前
小二郎应助Heng采纳,获得10
26秒前
棠堂发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999076
求助须知:如何正确求助?哪些是违规求助? 3538508
关于积分的说明 11274412
捐赠科研通 3277402
什么是DOI,文献DOI怎么找? 1807554
邀请新用户注册赠送积分活动 883917
科研通“疑难数据库(出版商)”最低求助积分说明 810080