Light&Fast Generative Adversarial Network for high-fidelity CT image synthesis of liver tumor

计算机科学 人工智能 鉴别器 模式识别(心理学) 特征(语言学) 构造(python库) 肝细胞癌 图像(数学) 肝肿瘤 深度学习 医学 内科学 电信 语言学 哲学 探测器 程序设计语言
作者
Zechen Zheng,Miao Wang,Chao Fan,Congqian Wang,Xuelei He,Xiaowei He
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:254: 108252-108252
标识
DOI:10.1016/j.cmpb.2024.108252
摘要

Hepatocellular carcinoma is a common disease with high mortality. Through deep learning methods to analyze HCC CT, the screening classification and prognosis model of HCC can be established, which further promotes the development of computer-aided diagnosis and treatment in the treatment of HCC. However, there are significant challenges in the actual establishment of HCC auxiliary diagnosis model due to data imbalance, especially for rare subtypes of HCC and underrepresented demographic groups. This study proposes a GAN model aimed at overcoming these obstacles and improving the accuracy of HCC auxiliary diagnosis. In order to generate liver and tumor images close to the real distribution. Firstly, we construct a new gradient transfer sampling module to improve the lack of texture details and excessive gradient transfer parameters of the deep model; Secondly, we construct an attention module with spatial and cross-channel feature extraction ability to improve the discriminator's ability to distinguish images; Finally, we design a new loss function for liver tumor imaging features to constrain the model to approach the real tumor features in iterations. In qualitative analysis, the images synthetic by our method closely resemble the real images in liver parenchyma, blood vessels, tumors, and other parts. In quantitative analysis, the optimal results of FID, PSNR, and SSIM are 75.73, 22.77, and 0.74, respectively. Furthermore, our experiments establish classification models for imbalanced data and enhanced data, resulting in an increase in accuracy rate by 21%–34%, an increase in AUC by 0.29 - 0.33, and an increase in specificity to 0.89. Our solution provides a variety of training data sources with low cost and high efficiency for the establishment of classification or prognostic models for imbalanced data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
7秒前
10秒前
从容幻梦完成签到,获得积分10
12秒前
无花果应助哆啦A梦采纳,获得10
12秒前
yfw完成签到,获得积分20
12秒前
麻薯头头发布了新的文献求助10
15秒前
lujie完成签到,获得积分10
16秒前
17秒前
17秒前
Lz555完成签到 ,获得积分10
18秒前
sally完成签到 ,获得积分10
19秒前
Huang完成签到,获得积分10
19秒前
zn发布了新的文献求助10
22秒前
lujie发布了新的文献求助10
22秒前
活泼山雁完成签到,获得积分10
24秒前
美好小玉完成签到,获得积分10
27秒前
大观天下发布了新的文献求助10
27秒前
从容幻梦发布了新的文献求助10
28秒前
33秒前
34秒前
36秒前
杜林发布了新的文献求助10
36秒前
科研狗发布了新的文献求助10
39秒前
39秒前
dannnnn发布了新的文献求助10
39秒前
nhocbinzuzu发布了新的文献求助10
39秒前
852应助麻薯头头采纳,获得10
40秒前
40秒前
40秒前
QQLL完成签到,获得积分10
41秒前
41秒前
SISI完成签到,获得积分10
42秒前
哆啦A梦发布了新的文献求助10
42秒前
43秒前
几何发布了新的文献求助30
44秒前
45秒前
Sandy完成签到,获得积分10
49秒前
tangyuan发布了新的文献求助10
51秒前
哆啦A梦完成签到,获得积分10
51秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043