Machine learning guided rational design of a non-heme iron-based lysine dioxygenase improves its total turnover number

赖氨酸 血红素 化学 合理设计 计算机科学 生物化学 立体化学 生物 遗传学 氨基酸
作者
R. Hunter Wilson,Anoop R. Damodaran,Ambika Bhagi‐Damodaran
标识
DOI:10.1101/2024.06.04.597480
摘要

Highly selective C-H functionalization remains an ongoing challenge in organic synthetic methodologies. Biocatalysts are robust tools for achieving these difficult chemical transformations. Biocatalyst engineering has often required directed evolution or structure-based rational design campaigns to improve their activities. In recent years, machine learning has been integrated into these workflows to improve the discovery of beneficial enzyme variants. In this work, we combine a structure-based machine-learning algorithm with classical molecular dynamics simulations to down select mutations for rational design of a non-heme iron-dependent lysine dioxygenase, LDO. This approach consistently resulted in functional LDO mutants and circumvents the need for extensive study of mutational activity before-hand. Our rationally designed single mutants purified with up to 2-fold higher yields than WT and displayed higher total turnover numbers (TTN). Combining five such single mutations into a pentamutant variant, LPNYI LDO, leads to a 40% improvement in the TTN (218±3) as compared to WT LDO (TTN = 160±2). Overall, this work offers a low-barrier approach for those seeking to synergize machine learning algorithms with pre-existing protein engineering strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy完成签到,获得积分20
2秒前
3秒前
4秒前
4秒前
李小晴天完成签到,获得积分10
8秒前
失眠成协发布了新的文献求助10
9秒前
10秒前
赛特特特完成签到,获得积分10
10秒前
12秒前
14秒前
渭水飞熊完成签到,获得积分10
16秒前
坦率友儿发布了新的文献求助10
16秒前
彭于晏应助Haiyan采纳,获得10
16秒前
奶油号角关注了科研通微信公众号
17秒前
teborlee完成签到,获得积分10
18秒前
19秒前
汉堡包应助mm采纳,获得10
20秒前
zhoupeng完成签到 ,获得积分10
22秒前
WZ完成签到 ,获得积分10
24秒前
yyl发布了新的文献求助30
24秒前
所所应助yyy采纳,获得10
24秒前
小蘑菇应助聪慧的盼夏采纳,获得10
26秒前
科研通AI6应助yyanxuemin919采纳,获得30
28秒前
qpp完成签到,获得积分10
28秒前
板凳完成签到 ,获得积分10
28秒前
29秒前
30秒前
30秒前
bkagyin应助yyl采纳,获得10
31秒前
王小丽完成签到,获得积分10
31秒前
务实的以松完成签到,获得积分10
31秒前
魔幻若血完成签到 ,获得积分10
32秒前
33秒前
34秒前
怕黑捕完成签到,获得积分10
34秒前
奶油号角发布了新的文献求助10
35秒前
kls发布了新的文献求助10
36秒前
冰雪完成签到,获得积分10
36秒前
领导范儿应助huanir99采纳,获得30
37秒前
yyy发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5559974
求助须知:如何正确求助?哪些是违规求助? 4645042
关于积分的说明 14674272
捐赠科研通 4586202
什么是DOI,文献DOI怎么找? 2516308
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841