Identifying the risk of depression in a large sample of adolescents: An artificial neural network based on random forest

心理学 萧条(经济学) 临床心理学 沉思 精神科 宏观经济学 经济 认知
作者
Yue Zhou,Hongxuan Xu,Jian Ping Gong,Tingwei Wang,Lin-Lin Gong,Kaida Li,Yanni Wang
出处
期刊:Journal of Adolescence [Elsevier]
标识
DOI:10.1002/jad.12357
摘要

Abstract Background This study aims to develop an artificial neural network (ANN) prediction model incorporating random forest (RF) screening ability for predicting the risk of depression in adolescents and identifies key risk factors to provide a new approach for primary care screening of depression among adolescents. Methods The data were from a large cross‐sectional study conducted in China from July to September 2021, enrolling 8635 adolescents aged 10–17 with their parents. We used the Patient health questionnaire (PHQ‐9) to rate adolescent depression symptoms, using scales and single‐item questions to collect demographic information and other variables. Initial model variables screening used the RF importance assessment, followed by building prediction model using the screened variables through the ANN. Results The rate of depression symptoms in adolescents was 24.6%, and the depression risk prediction model was built based on 70% of the training set and 30% of the test set. Ten variables were included in the final prediction model with a model accuracy of 85.03%, AUC of 0.892, specificity of 89.79%, and sensitivity of 70.81%. The top 10 significant factors of depression risk were adolescent rumination, adolescent self‐esteem, adolescent mobile phone addiction, peer victimization, care in parenting styles, overprotection in parenting styles, academic pressure, conflict in parent–child relationship, parental rumination, and relationship between parents. Conclusions The ANN model based on the RF effectively identifies depression risk in adolescents and provides a methodological reference for large‐scale primary screening. Cross‐sectional studies and single‐item scales limit further improvements in model accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yiyiyi完成签到 ,获得积分10
1秒前
1秒前
桐桐应助尼古拉斯二狗蛋采纳,获得10
1秒前
Zezezee完成签到,获得积分10
2秒前
将离发布了新的文献求助10
2秒前
调研昵称发布了新的文献求助10
3秒前
kingmin应助yijiubingshi采纳,获得10
3秒前
3秒前
4秒前
hxn完成签到,获得积分10
4秒前
奋斗尔安完成签到,获得积分10
4秒前
沙拉发布了新的文献求助10
5秒前
hajy完成签到 ,获得积分10
5秒前
单纯寒凝发布了新的文献求助10
5秒前
5秒前
junzilan发布了新的文献求助10
5秒前
田様应助卡卡采纳,获得10
6秒前
Zezezee发布了新的文献求助10
8秒前
复杂的问玉完成签到,获得积分20
9秒前
10秒前
10秒前
睡睡完成签到,获得积分10
10秒前
11秒前
12秒前
所所应助饕餮采纳,获得10
12秒前
平淡小凝发布了新的文献求助10
12秒前
nihaoxiaoai完成签到,获得积分10
13秒前
完美世界应助英俊的汉堡采纳,获得10
13秒前
爱静静应助hehe采纳,获得10
14秒前
九城发布了新的文献求助20
14秒前
斯文败类应助高君奇采纳,获得10
14秒前
小二郎应助特兰克斯采纳,获得10
14秒前
mojomars发布了新的文献求助10
14秒前
吃嘛嘛香完成签到,获得积分10
14秒前
wqy发布了新的文献求助10
15秒前
天天快乐应助新的心跳采纳,获得10
15秒前
Orange应助有益采纳,获得10
15秒前
17秒前
爆米花应助marinemiao采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808