Identifying the risk of depression in a large sample of adolescents: An artificial neural network based on random forest

心理学 萧条(经济学) 临床心理学 沉思 精神科 宏观经济学 经济 认知
作者
Yue Zhou,Hongxuan Xu,Jian Ping Gong,Tingwei Wang,Lin-Lin Gong,Kaida Li,Yanni Wang
出处
期刊:Journal of Adolescence [Wiley]
标识
DOI:10.1002/jad.12357
摘要

Abstract Background This study aims to develop an artificial neural network (ANN) prediction model incorporating random forest (RF) screening ability for predicting the risk of depression in adolescents and identifies key risk factors to provide a new approach for primary care screening of depression among adolescents. Methods The data were from a large cross‐sectional study conducted in China from July to September 2021, enrolling 8635 adolescents aged 10–17 with their parents. We used the Patient health questionnaire (PHQ‐9) to rate adolescent depression symptoms, using scales and single‐item questions to collect demographic information and other variables. Initial model variables screening used the RF importance assessment, followed by building prediction model using the screened variables through the ANN. Results The rate of depression symptoms in adolescents was 24.6%, and the depression risk prediction model was built based on 70% of the training set and 30% of the test set. Ten variables were included in the final prediction model with a model accuracy of 85.03%, AUC of 0.892, specificity of 89.79%, and sensitivity of 70.81%. The top 10 significant factors of depression risk were adolescent rumination, adolescent self‐esteem, adolescent mobile phone addiction, peer victimization, care in parenting styles, overprotection in parenting styles, academic pressure, conflict in parent–child relationship, parental rumination, and relationship between parents. Conclusions The ANN model based on the RF effectively identifies depression risk in adolescents and provides a methodological reference for large‐scale primary screening. Cross‐sectional studies and single‐item scales limit further improvements in model accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一直向前发布了新的文献求助10
1秒前
可与发布了新的文献求助10
2秒前
香蕉觅云应助123采纳,获得10
3秒前
迟迟发布了新的文献求助10
4秒前
Hehe完成签到,获得积分10
4秒前
solveing发布了新的文献求助10
6秒前
九粒完成签到,获得积分10
7秒前
风趣从露完成签到,获得积分10
8秒前
TaooSHuu完成签到,获得积分10
8秒前
9秒前
cuizhehao完成签到,获得积分10
10秒前
10秒前
oushichan关注了科研通微信公众号
10秒前
zonker完成签到,获得积分10
11秒前
WittingGU完成签到,获得积分0
11秒前
axin发布了新的文献求助10
11秒前
zou发布了新的文献求助10
13秒前
希望天下0贩的0应助明眸采纳,获得10
15秒前
15秒前
书生发布了新的文献求助10
15秒前
15秒前
可与发布了新的文献求助10
18秒前
鸣笛应助火星上紫山采纳,获得10
19秒前
陈澜发布了新的文献求助20
19秒前
Winfred发布了新的文献求助10
19秒前
20秒前
20秒前
lin完成签到,获得积分10
21秒前
588发布了新的文献求助10
21秒前
风趣夜云发布了新的文献求助10
21秒前
kiki发布了新的文献求助10
22秒前
22秒前
怪杰发布了新的文献求助10
23秒前
风轻云淡发布了新的文献求助20
25秒前
25秒前
26秒前
overlood完成签到 ,获得积分10
26秒前
abc_xin发布了新的文献求助10
26秒前
26秒前
朴实觅波发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014