Identifying the risk of depression in a large sample of adolescents: An artificial neural network based on random forest

心理学 萧条(经济学) 临床心理学 沉思 精神科 宏观经济学 经济 认知
作者
Yue Zhou,Hongxuan Xu,Jian Ping Gong,Tingwei Wang,Lin-Lin Gong,Kaida Li,Yanni Wang
出处
期刊:Journal of Adolescence [Elsevier]
标识
DOI:10.1002/jad.12357
摘要

Abstract Background This study aims to develop an artificial neural network (ANN) prediction model incorporating random forest (RF) screening ability for predicting the risk of depression in adolescents and identifies key risk factors to provide a new approach for primary care screening of depression among adolescents. Methods The data were from a large cross‐sectional study conducted in China from July to September 2021, enrolling 8635 adolescents aged 10–17 with their parents. We used the Patient health questionnaire (PHQ‐9) to rate adolescent depression symptoms, using scales and single‐item questions to collect demographic information and other variables. Initial model variables screening used the RF importance assessment, followed by building prediction model using the screened variables through the ANN. Results The rate of depression symptoms in adolescents was 24.6%, and the depression risk prediction model was built based on 70% of the training set and 30% of the test set. Ten variables were included in the final prediction model with a model accuracy of 85.03%, AUC of 0.892, specificity of 89.79%, and sensitivity of 70.81%. The top 10 significant factors of depression risk were adolescent rumination, adolescent self‐esteem, adolescent mobile phone addiction, peer victimization, care in parenting styles, overprotection in parenting styles, academic pressure, conflict in parent–child relationship, parental rumination, and relationship between parents. Conclusions The ANN model based on the RF effectively identifies depression risk in adolescents and provides a methodological reference for large‐scale primary screening. Cross‐sectional studies and single‐item scales limit further improvements in model accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
背包包包完成签到,获得积分10
1秒前
1秒前
刘壮发布了新的文献求助10
1秒前
asder发布了新的文献求助10
2秒前
123发布了新的文献求助10
2秒前
向晚完成签到,获得积分10
2秒前
2秒前
dew应助Y_Jfeng采纳,获得10
2秒前
2秒前
十一完成签到,获得积分10
2秒前
3秒前
345完成签到,获得积分20
3秒前
3秒前
3秒前
Chen完成签到,获得积分10
3秒前
4秒前
meng完成签到,获得积分10
4秒前
小蘑菇应助laj采纳,获得10
4秒前
名金学南完成签到,获得积分10
5秒前
yu完成签到 ,获得积分10
5秒前
5秒前
背包包包发布了新的文献求助10
5秒前
eating发布了新的文献求助10
5秒前
geold发布了新的文献求助30
6秒前
大模型应助穿山甲先生采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
蜡笔小金完成签到 ,获得积分10
7秒前
7秒前
WU完成签到,获得积分10
7秒前
我是老大应助刘壮采纳,获得10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
元元元贞完成签到 ,获得积分10
9秒前
Breath发布了新的文献求助30
9秒前
樊小雾完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485