Identifying the risk of depression in a large sample of adolescents: An artificial neural network based on random forest

心理学 萧条(经济学) 临床心理学 沉思 精神科 经济 宏观经济学 认知
作者
Yue Zhou,Hongxuan Xu,Jian Ping Gong,Tingwei Wang,Lin-Lin Gong,Kaida Li,Yanni Wang
出处
期刊:Journal of Adolescence [Elsevier]
标识
DOI:10.1002/jad.12357
摘要

Abstract Background This study aims to develop an artificial neural network (ANN) prediction model incorporating random forest (RF) screening ability for predicting the risk of depression in adolescents and identifies key risk factors to provide a new approach for primary care screening of depression among adolescents. Methods The data were from a large cross‐sectional study conducted in China from July to September 2021, enrolling 8635 adolescents aged 10–17 with their parents. We used the Patient health questionnaire (PHQ‐9) to rate adolescent depression symptoms, using scales and single‐item questions to collect demographic information and other variables. Initial model variables screening used the RF importance assessment, followed by building prediction model using the screened variables through the ANN. Results The rate of depression symptoms in adolescents was 24.6%, and the depression risk prediction model was built based on 70% of the training set and 30% of the test set. Ten variables were included in the final prediction model with a model accuracy of 85.03%, AUC of 0.892, specificity of 89.79%, and sensitivity of 70.81%. The top 10 significant factors of depression risk were adolescent rumination, adolescent self‐esteem, adolescent mobile phone addiction, peer victimization, care in parenting styles, overprotection in parenting styles, academic pressure, conflict in parent–child relationship, parental rumination, and relationship between parents. Conclusions The ANN model based on the RF effectively identifies depression risk in adolescents and provides a methodological reference for large‐scale primary screening. Cross‐sectional studies and single‐item scales limit further improvements in model accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼应助美味蟹黄堡采纳,获得20
刚刚
2秒前
咳咳咳完成签到,获得积分10
3秒前
spring完成签到,获得积分10
5秒前
LSx完成签到,获得积分10
7秒前
11秒前
12秒前
NexusExplorer应助Fortune采纳,获得10
12秒前
14秒前
美味蟹黄堡完成签到,获得积分10
15秒前
15秒前
15秒前
乐园完成签到,获得积分10
15秒前
zt发布了新的文献求助10
18秒前
111发布了新的文献求助10
18秒前
12545发布了新的文献求助10
19秒前
21秒前
juwish完成签到,获得积分10
21秒前
布丁发布了新的文献求助10
24秒前
Lucas应助zt采纳,获得10
25秒前
111完成签到,获得积分10
25秒前
yiding完成签到 ,获得积分10
25秒前
努力上进的小张完成签到,获得积分10
26秒前
rfew完成签到,获得积分10
31秒前
bkagyin应助czb采纳,获得10
31秒前
32秒前
无限亦寒发布了新的文献求助10
32秒前
32秒前
owldan完成签到,获得积分10
34秒前
WSSY发布了新的文献求助10
35秒前
36秒前
zhlh完成签到,获得积分10
37秒前
37秒前
39秒前
n烨完成签到,获得积分10
39秒前
39秒前
泥泥应助12545采纳,获得10
40秒前
n烨发布了新的文献求助10
41秒前
丘比特应助活着采纳,获得10
42秒前
43秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212011
求助须知:如何正确求助?哪些是违规求助? 2860863
关于积分的说明 8126262
捐赠科研通 2526721
什么是DOI,文献DOI怎么找? 1360534
科研通“疑难数据库(出版商)”最低求助积分说明 643243
邀请新用户注册赠送积分活动 615444