光催化
异质结
还原(数学)
材料科学
光电子学
化学
化学工程
催化作用
工程类
生物化学
数学
几何学
作者
Jiwen Zhang,Jinke Cheng,Meiyang Song,Henghui Song,Yi Wang,Shuang-Feng Yin,Peng Chen
标识
DOI:10.1016/j.cej.2024.153713
摘要
Constructing sulfur vacancies to increase the active edge sites of molybdenum disulfide (MoS2) is an effective strategy for enhancing the catalytic activity of cocatalysts in heterojunction materials. However, defects in the interface of traditional research can serve as carrier capture centers that significantly impede carrier migration. In this study, we propose an innovative carrier migration pathway to mitigate carrier recombination at interface vacancies by regulating the local microenvironment of MoS2−x/ZnIn2S4−x heterojunction (MOSZ). Fortunately, the optimized MOSZ3 exhibits outstanding NO3− reduction performance (185.59 µmol g−1 h−1) without the need for sacrificial agents. Density functional theory (DFT) calculations and experimental results collectively confirm that surface oxygen regulates the local microenvironment of heterojunctions, disrupting the localization effects of sulfur vacancies by inducing local charge polarization and creating a charge transport channel. This contributes to enhancing carrier migration and exciton dissociation. Furthermore, it also regulates the chemisorption and activation of NO3− as well as the energy required for deoxygenation and hydrogenation of intermediates. Our work not only provides a novel perspective on alleviating charge trapping in interfacial vacancies, but also offers new insights for environmental remediation and sustainable energy production.
科研通智能强力驱动
Strongly Powered by AbleSci AI