Information gain-based multi-objective evolutionary algorithm for feature selection

信息增益 特征选择 计算机科学 进化算法 特征(语言学) 选择(遗传算法) 人工智能 算法 模式识别(心理学) 机器学习 数据挖掘 哲学 语言学
作者
Baohang Zhang,Ziqian Wang,Haotian Li,Zhenyu Lei,Jiujun Cheng,Shangce Gao
出处
期刊:Information Sciences [Elsevier]
卷期号:677: 120901-120901 被引量:1
标识
DOI:10.1016/j.ins.2024.120901
摘要

Feature selection (FS) has garnered significant attention because of its pivotal role in enhancing the efficiency and effectiveness of various machine learning and data mining algorithms. Concurrently, multiobjective feature selection (MOFS) algorithms strive to balance the complexity of multiple optimization objectives during the FS process. These include minimizing the number of selected features while maximizing classification performance. Nonetheless, managing the complexity of feature combinations presents a formidable challenge, particularly in high-dimensional datasets. Evolutionary algorithms (EAs) are increasingly adopted in MOFS owing to their exceptional global search capabilities and robustness. Despite their strengths, EAs face difficulties in navigating expansive solution spaces and achieving a balance between exploration and exploitation. To address these challenges, this study introduces a novel information gain-based EA for MOFS, designated as IGEA. This approach utilizes a clustering method for selecting a diverse parent population, thereby enhancing individual variability and maintaining a high-quality population. Considerably, IGEA employs information gain as a metric to evaluate the contribution of features to classification tasks. This metric informs crucial operations such as crossover and mutation. Moreover, the study extensively examines the actual solutions derived from IGEA, focusing on feature correlation and redundancy. This analysis illuminates IGEA's adept handling of these aspects to refine MOFS. Experimental results on 23 widely used classification datasets confirm IGEA's superiority over five other state-of-the-art algorithms, demonstrating its enhanced effectiveness and efficiency in complex MOFS scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖元柏发布了新的文献求助10
1秒前
逸晨发布了新的文献求助10
1秒前
兜有米完成签到 ,获得积分10
2秒前
wlnhyF完成签到,获得积分10
2秒前
浅尝离白应助远方采纳,获得30
2秒前
果子完成签到,获得积分10
3秒前
4秒前
天天快乐应助Buster采纳,获得10
4秒前
madcatalysis发布了新的文献求助10
4秒前
missmumu完成签到,获得积分10
5秒前
6秒前
上官若男应助fwt采纳,获得10
6秒前
lhb完成签到,获得积分10
8秒前
9秒前
我是老大应助易槐采纳,获得10
9秒前
9秒前
9秒前
9秒前
提莫蘑菇完成签到,获得积分10
10秒前
11秒前
11秒前
虚心岂愈完成签到,获得积分10
12秒前
伯尔尼圆白菜完成签到,获得积分10
12秒前
情怀应助逸晨采纳,获得10
12秒前
12秒前
顺利的南露完成签到,获得积分10
14秒前
IAMXC发布了新的文献求助10
14秒前
bioli完成签到,获得积分10
14秒前
03210322完成签到 ,获得积分10
15秒前
Tracy发布了新的文献求助10
15秒前
cc完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
bilibala发布了新的文献求助10
16秒前
四月发布了新的文献求助10
16秒前
千里发布了新的文献求助10
16秒前
17秒前
蒙哥卡恩完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143506
求助须知:如何正确求助?哪些是违规求助? 2794865
关于积分的说明 7812588
捐赠科研通 2450967
什么是DOI,文献DOI怎么找? 1304178
科研通“疑难数据库(出版商)”最低求助积分说明 627193
版权声明 601386