Information gain-based multi-objective evolutionary algorithm for feature selection

信息增益 特征选择 计算机科学 进化算法 特征(语言学) 选择(遗传算法) 人工智能 算法 模式识别(心理学) 机器学习 数据挖掘 语言学 哲学
作者
Baohang Zhang,Ziqian Wang,Haotian Li,Zhenyu Lei,Jiujun Cheng,Shangce Gao
出处
期刊:Information Sciences [Elsevier BV]
卷期号:677: 120901-120901 被引量:1
标识
DOI:10.1016/j.ins.2024.120901
摘要

Feature selection (FS) has garnered significant attention because of its pivotal role in enhancing the efficiency and effectiveness of various machine learning and data mining algorithms. Concurrently, multiobjective feature selection (MOFS) algorithms strive to balance the complexity of multiple optimization objectives during the FS process. These include minimizing the number of selected features while maximizing classification performance. Nonetheless, managing the complexity of feature combinations presents a formidable challenge, particularly in high-dimensional datasets. Evolutionary algorithms (EAs) are increasingly adopted in MOFS owing to their exceptional global search capabilities and robustness. Despite their strengths, EAs face difficulties in navigating expansive solution spaces and achieving a balance between exploration and exploitation. To address these challenges, this study introduces a novel information gain-based EA for MOFS, designated as IGEA. This approach utilizes a clustering method for selecting a diverse parent population, thereby enhancing individual variability and maintaining a high-quality population. Considerably, IGEA employs information gain as a metric to evaluate the contribution of features to classification tasks. This metric informs crucial operations such as crossover and mutation. Moreover, the study extensively examines the actual solutions derived from IGEA, focusing on feature correlation and redundancy. This analysis illuminates IGEA's adept handling of these aspects to refine MOFS. Experimental results on 23 widely used classification datasets confirm IGEA's superiority over five other state-of-the-art algorithms, demonstrating its enhanced effectiveness and efficiency in complex MOFS scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jkdzp发布了新的文献求助10
刚刚
星星完成签到,获得积分20
刚刚
gs发布了新的文献求助10
刚刚
刚刚
番号01发布了新的文献求助10
1秒前
wisdom应助三六九采纳,获得10
1秒前
2秒前
zhenya发布了新的文献求助10
2秒前
一介书生完成签到 ,获得积分10
3秒前
3秒前
时尚俊驰发布了新的文献求助10
3秒前
4秒前
星星发布了新的文献求助10
4秒前
monoklatt发布了新的文献求助10
5秒前
AlinaLee完成签到,获得积分10
5秒前
6秒前
专注的煎饼完成签到,获得积分10
6秒前
lilian发布了新的文献求助10
7秒前
为你博弈发布了新的文献求助10
7秒前
Hello应助星星采纳,获得10
8秒前
SciGPT应助rain采纳,获得10
8秒前
8秒前
8秒前
10秒前
10秒前
传奇3应助没有昵称采纳,获得20
11秒前
希望天下0贩的0应助asdfqwer采纳,获得10
11秒前
12秒前
欧阳慕山完成签到,获得积分10
12秒前
凡夕木叶发布了新的文献求助10
12秒前
12秒前
退堂鼓完成签到,获得积分20
13秒前
13秒前
小马甲应助Corry采纳,获得10
14秒前
烟花应助时尚俊驰采纳,获得10
14秒前
yu发布了新的文献求助10
14秒前
井野浮完成签到,获得积分10
15秒前
wangxiaoqing完成签到,获得积分10
15秒前
在水一方应助Betty采纳,获得10
15秒前
乐乐应助开心寄松采纳,获得10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961655
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139004
捐赠科研通 3240407
什么是DOI,文献DOI怎么找? 1790947
邀请新用户注册赠送积分活动 872683
科研通“疑难数据库(出版商)”最低求助积分说明 803306