Intelligent Detection of Tunnel Leakage Based on Improved Mask R-CNN

计算机科学 人工智能 预处理器 级联 泄漏(经济) 模式识别(心理学) 分割 稳健性(进化) 特征提取 计算机视觉 工程类 生物化学 基因 宏观经济学 化学工程 经济 化学
作者
Wen-Kai Wang,Xiangyang Xu,Hao Yang
出处
期刊:Symmetry [MDPI AG]
卷期号:16 (6): 709-709 被引量:3
标识
DOI:10.3390/sym16060709
摘要

The instance segmentation model based on deep learning has addressed the challenges in intelligently detecting water leakage in shield tunneling. Due to the limited generalization ability of the baseline model, occurrences of missed detections, false detections, and repeated detections are encountered during the actual detection of tunnel water leakage. This paper adopts Mask R-CNN as the baseline model and introduces a mask cascade strategy to enhance the quality of positive samples. Additionally, the backbone network in the model is replaced with RegNetX to enlarge the model’s receptive field, and MDConv is introduced to enhance the model’s feature extraction capability in the edge receptive field region. Building upon these improvements, the proposed model is named Cascade-MRegNetX. The backbone network MRegNetX features a symmetrical block structure, which, when combined with deformable convolutions, greatly assists in extracting edge features from corresponding regions. During the dataset preprocessing stage, we augment the dataset through image rotation and classification, thereby improving both the quality and quantity of samples. Finally, by leveraging pre-trained models through transfer learning, we enhance the robustness of the target model. This model can effectively extract features from water leakage areas of different scales or deformations. Through instance segmentation experiments conducted on a dataset comprising 766 images of tunnel water leakage, the experimental results demonstrate that the improved model achieves higher precision in tunnel water leakage mask detection. Through these enhancements, the detection effectiveness, feature extraction capability, and generalization ability of the baseline model are improved. The improved Cascade-MRegNetX model achieves respective improvements of 7.7%, 2.8%, and 10.4% in terms of AP, AP0.5, and AP0.75 compared to the existing Cascade Mask R-CNN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰灰成长中完成签到 ,获得积分10
刚刚
1秒前
忧心的香之完成签到,获得积分10
2秒前
CodeCraft应助cruise采纳,获得10
2秒前
2秒前
3秒前
3秒前
小人物发布了新的文献求助10
6秒前
zuochao完成签到,获得积分10
6秒前
8秒前
hcf完成签到,获得积分10
8秒前
DrZ发布了新的文献求助10
8秒前
9秒前
我是老大应助tttttqqq采纳,获得10
9秒前
9秒前
Hello应助叶世玉采纳,获得10
10秒前
chen完成签到,获得积分10
11秒前
科研通AI5应助小人物采纳,获得10
11秒前
12秒前
亚菲发布了新的文献求助10
13秒前
13秒前
Ashmitte发布了新的文献求助10
14秒前
14秒前
顺顺黎黎发布了新的文献求助10
14秒前
xlj730227完成签到 ,获得积分10
14秒前
15秒前
文献缺缺应助1111采纳,获得10
15秒前
16秒前
sya给sya的求助进行了留言
16秒前
123456发布了新的文献求助10
17秒前
坦率的大树完成签到 ,获得积分10
17秒前
不懂白发布了新的文献求助10
17秒前
cruise发布了新的文献求助10
18秒前
汉堡包应助柳白采纳,获得10
19秒前
星辰大海应助yecheng采纳,获得10
19秒前
现实的白昼完成签到,获得积分10
19秒前
19秒前
脑洞疼应助亚菲采纳,获得10
19秒前
20秒前
tttttqqq发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514561
求助须知:如何正确求助?哪些是违规求助? 3096931
关于积分的说明 9233203
捐赠科研通 2791934
什么是DOI,文献DOI怎么找? 1532173
邀请新用户注册赠送积分活动 711816
科研通“疑难数据库(出版商)”最低求助积分说明 707031