Recent developments have introduced a groundbreaking form of collinear magnetism known as "altermagnetism". This emerging magnetic phase is characterized by robust time-reversal symmetry breaking, antiparallel magnetic order, and alternating spin-splitting band structures, yet it exhibits vanishing net magnetization constrained by symmetry. Altermagnetism uniquely integrates traits previously considered mutually exclusive to conventional collinear ferromagnetism and antiferromagnetism, thereby facilitating phenomena and functionalities previously not achievable within these traditional categories of magnetism. Initially proposed theoretically, the existence of the altermagnetic phase has since been corroborated by a range of experimental studies, which have confirmed its unique properties and potential for applications. This review explores the rapidly expanding research on altermagnets, emphasizing the novel physical phenomena they manifest, methodologies for inducing altermagnetism, and promising altermagnetic materials. The goal of this review is to furnish readers with a comprehensive overview of altermagnetism and to inspire further innovative studies on altermagnetic materials which could potentially revolutionize applications in technology and materials science.