A fault diagnosis framework based on heterogeneous ensemble learning for air conditioning chiller with unbalanced samples

冷冻机 空调 冷冻机锅炉系统 条件作用 断层(地质) 计算机科学 冷水机组 集成学习 环境科学 人工智能 工程类 数学 物理 航空航天工程 热力学 机械工程 统计 地质学 制冷剂 地震学 气体压缩机
作者
Zhen Jia,Guoyu Yao,Ke Zhao,Yang Li,Peng Xu,Zhenbao Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086123-086123 被引量:2
标识
DOI:10.1088/1361-6501/ad480f
摘要

Abstract Big data-based air conditioning fault diagnosis research has developed rapidly in recent years, but in actual engineering, the fault sample size of air conditioning systems is much smaller than the normal sample size, and the resulting sample imbalance problem makes conventional data-driven diagnostic methods based on low accuracy and poor stability. In order to solve the problem of unbalanced fault diagnosis of air-conditioning chillers, this paper proposes an integrated learning-based diagnostic model, which achieves diagnosis by combining multiple base models and by majority voting. The method uses four classification models, namely, random forest model, decision tree model, k nearest neighbor model, and isomorphic integration model, as base classifiers, and synthesizes the four base classifiers into a heterogeneous integration algorithmic model (IMV) through integrated learning, and performs diagnostic detection of seven types of typical faults of chiller units using the majority voting method of integrated learning. The effectiveness of the proposed algorithm is verified on the RP-1043 dataset, and the experimental results show that the accuracy of the heterogeneous integrated algorithm model (IMV) can reach 96.87%, which is a significant improvement compared with the accuracy of the other four base classifier models (81.04%–96.25%). Therefore, the integrated learning model has some application prospects in fault diagnosis when targeting unbalanced datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的泽洋完成签到,获得积分10
1秒前
1秒前
2秒前
pfguo完成签到,获得积分10
2秒前
Rue发布了新的文献求助10
2秒前
乐悠悠发布了新的文献求助15
2秒前
3秒前
所所应助冷酷的夜雪采纳,获得10
3秒前
美好眼神发布了新的文献求助10
3秒前
3秒前
崔布林发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
找论文的牛马完成签到,获得积分10
4秒前
一一应助上官冷不冷采纳,获得10
5秒前
5秒前
5秒前
星辰大海应助三七采纳,获得10
5秒前
6秒前
风中的仙人掌完成签到,获得积分10
6秒前
Wangyutong发布了新的文献求助10
6秒前
Cherish应助All采纳,获得10
7秒前
艺馨发布了新的文献求助10
7秒前
fanicky完成签到,获得积分10
7秒前
DZ发布了新的文献求助10
7秒前
称心问凝完成签到,获得积分10
7秒前
Kin_L发布了新的文献求助10
8秒前
青柠发布了新的文献求助10
9秒前
10秒前
马唯琛发布了新的文献求助10
10秒前
奇怪的柒完成签到,获得积分10
10秒前
赵宇宙发布了新的文献求助10
10秒前
zjzxs完成签到,获得积分10
11秒前
11秒前
良仔完成签到,获得积分10
11秒前
Lignin发布了新的文献求助10
11秒前
斯坦933应助美好眼神采纳,获得10
11秒前
HJY完成签到,获得积分10
11秒前
xxxxxb完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560391
求助须知:如何正确求助?哪些是违规求助? 3986563
关于积分的说明 12343059
捐赠科研通 3657249
什么是DOI,文献DOI怎么找? 2014798
邀请新用户注册赠送积分活动 1049621
科研通“疑难数据库(出版商)”最低求助积分说明 937803