苯甲醛
苯甲醇
异质结
光催化
双功能
材料科学
空位缺陷
氧化还原
光化学
催化作用
密度泛函理论
化学工程
化学
光电子学
有机化学
计算化学
结晶学
工程类
冶金
作者
Chaohui Ruan,Chengyu Wang,Yu‐Cheng Chen,Zhongliao Wang,Keting Wang,Ying Zhou,Sujuan Zhang,Gaoli Chen,Zheng Xiu-zhen,Sugang Meng,Shifu Chen
标识
DOI:10.1016/j.seppur.2024.127929
摘要
CO2 photoreduction into chemical fuels is hopeful and sustainable for a carbon–neutral future. Herein, a bifunctional dual-vacancy-modified hollow heterojunction photocatalyst is ingeniously designed for CO2 photoreduction to CO coupling with selective oxidation of benzyl alcohol to benzaldehyde. Synergistic catalysis effect resulted from hollow heterostructures, TiO2 with O vacancies (TiO2-x) and Zn0.3-xCd0.7S with Zn vacancies (ZCS) leads to excellent photoreduction and photoxidation performances. The optimized sample (TiO2-x/ZCS hollow sphere) exhibits highest photocatalytic activity of all the obtained samples. The yields of CO and benzaldehyde are 105 and 323.5 μmol g–1h−1, respectively. The construction of Z-scheme heterojunction realizes the spatial separation of redox reaction sites, and the dual-vacancy distributed on the heterojunction enhance the interfacial reactivity. Additionally, density functional theory calculation and in-situ technology reveal that Zn vacancy in ZCS and O vacancy in TiO2-x function as active sites for the binding and activation of *COOH and *PhCH2O-, respectively, thereby stabilizing the crucial step in the formation of intermediates such as CO and benzaldehyde. This work enhances the utilization of photogenerated carrier, and affords a new opportunity to design hollow heterojunction with dual-vacancy engineering to boost photocatalytic performance for coupling reaction system.
科研通智能强力驱动
Strongly Powered by AbleSci AI