An online chatter detection and recognition method for camshaft non-circular contour high-speed grinding based on improved LMD and GAPSO-ABC-SVM

凸轮轴 支持向量机 模式识别(心理学) 人工智能 汽车工程 研磨 计算机科学 工程类 语音识别 机械工程
作者
Rongjin Zhuo,Zhaohui Deng,Yiwen Li,Tao Liu,Jimin Ge,Lishu Lv,Wei Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:216: 111487-111487 被引量:8
标识
DOI:10.1016/j.ymssp.2024.111487
摘要

The camshaft is a crucial part of the engine. However, its non-circular contour surface is prone to chatter in high-speed grinding, seriously affecting the processing quality and efficiency. Therefore, an online detection and recognition method for camshaft non-circular contour high-speed grinding chatter based on improved LMD and GAPSO-ABC-SVM is proposed. Firstly, the local mean decomposition (LMD) algorithm is improved by the mirror extension method, moving average algorithm, and adaptive soft screening stopping criterion. Its ability to deal with unsteady vibration signals is verified by simulation signals and experiments. Then, considering the influence of the curvature change of the non-circular contour grinding surface on the chatter features, the signal features are automatically extracted according to the contour curve characteristics. Finally, a recognition algorithm based on GAPSO-ABC-SVM is proposed to improve the accuracy and robustness of high-speed grinding chatter recognition. A new hybrid swarm intelligent optimization algorithm is proposed through the intelligent fusion of Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) algorithms. The support vector machine (SVM) optimization is implemented by the hybrid swarm intelligence algorithm. In the high-speed grinding chatter verification experiment of camshaft non-circular contour, the detection and recognition method based on improved LMD and GAPSO-ABC-SVM can achieve an accuracy of 97.917 % for chatter recognition. And it has good fault tolerance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
科目三应助小虫采纳,获得10
2秒前
美丽梦秋发布了新的文献求助10
2秒前
快乐的发布了新的文献求助10
3秒前
3秒前
打打应助王伟采纳,获得10
3秒前
4秒前
4秒前
aobadong完成签到,获得积分10
4秒前
4秒前
毓香谷的春天完成签到 ,获得积分0
5秒前
6秒前
micett完成签到,获得积分10
7秒前
沐橘完成签到,获得积分20
7秒前
坚强的哈密瓜完成签到,获得积分10
9秒前
细心夏瑶完成签到,获得积分10
10秒前
二三事完成签到,获得积分20
10秒前
11秒前
WFLLL发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
HelenZ发布了新的文献求助10
13秒前
14秒前
15秒前
别来无恙完成签到 ,获得积分10
15秒前
Lucas应助皮崇知采纳,获得10
16秒前
落后凝莲发布了新的文献求助10
17秒前
17秒前
Tiger发布了新的文献求助10
17秒前
19秒前
xiaoma发布了新的文献求助10
20秒前
20秒前
kkaky完成签到,获得积分10
22秒前
22秒前
24秒前
tennisgirl完成签到 ,获得积分10
24秒前
NexusExplorer应助霸气的思柔采纳,获得30
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420