Multi-Agent Reinforcement Learning-Based Decision Making for Twin-Vehicles Cooperative Driving in Stochastic Dynamic Highway Environments

强化学习 灵活性(工程) 超车 一般化 计算机科学 适应(眼睛) 钢筋 工程类 人工智能 运输工程 数学 结构工程 统计 光学 物理 数学分析
作者
Siyuan Chen,Meiling Wang,Wenjie Song,Yi Yang,Mengyin Fu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (10): 12615-12627 被引量:3
标识
DOI:10.1109/tvt.2023.3275582
摘要

In the past decade, reinforcement learning (RL) has achieved encouraging results in autonomous driving, especially in well-structured and regulated highway environments. However, few researches pay attention to RL-based multiple-vehicles cooperative driving, which is much more challenging because of dynamic real-time interactions and transient scenarios. This article proposes a Multi-Agent Reinforcement Learning (MARL) based twin-vehicles cooperative driving decision making method which achieves the generalization adaptation of the RL method in highly dynamic highway environments and enhances the flexibility and effectiveness of collaborative decision making system. The proposed fair cooperative MARL method pays equal attention to the individual intelligence and the cooperative performance, and employs a stable estimation method to reduce the propagation of overestimated joint $Q$ -values between agents. Thus, the twin-vehicles system strikes a balance between maintaining formation and free overtaking in dynamic highway environments, to intelligently adapt to different scenarios, such as heavy traffic, loose traffic, even some emergency. Targeted experiments show that our method has strong cooperative performance, also further increases the possibility of creating a harmonious driving environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
惜陌发布了新的文献求助10
3秒前
3秒前
FashionBoy应助小康采纳,获得10
4秒前
搜集达人应助WN采纳,获得10
5秒前
难过手链发布了新的文献求助10
6秒前
Mavis完成签到,获得积分10
6秒前
老温完成签到,获得积分10
7秒前
8秒前
谨慎乌发布了新的文献求助10
8秒前
javascript完成签到,获得积分10
8秒前
yidi01完成签到,获得积分10
8秒前
小确幸完成签到,获得积分10
10秒前
白开水完成签到,获得积分10
11秒前
11秒前
kento发布了新的文献求助30
12秒前
半烟完成签到 ,获得积分10
12秒前
ing发布了新的文献求助30
14秒前
浅忆发布了新的文献求助10
14秒前
Hui_2023发布了新的文献求助30
16秒前
18秒前
半烟发布了新的文献求助10
19秒前
22秒前
WN发布了新的文献求助10
22秒前
26秒前
Owen应助果小镁采纳,获得10
29秒前
Jasper应助小康采纳,获得10
29秒前
要减肥的凝琴完成签到,获得积分10
33秒前
浅忆完成签到,获得积分10
34秒前
星辰大海应助猜猜我是谁采纳,获得10
34秒前
惜陌发布了新的文献求助10
35秒前
十二月花开完成签到 ,获得积分10
37秒前
YG完成签到,获得积分10
38秒前
39秒前
39秒前
ls完成签到,获得积分10
41秒前
酷酷的冰淇淋完成签到 ,获得积分10
42秒前
求助人员发布了新的文献求助10
44秒前
mylord完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560435
求助须知:如何正确求助?哪些是违规求助? 4645638
关于积分的说明 14675849
捐赠科研通 4586812
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1461007