Multi-Agent Reinforcement Learning-Based Decision Making for Twin-Vehicles Cooperative Driving in Stochastic Dynamic Highway Environments

强化学习 灵活性(工程) 超车 一般化 计算机科学 适应(眼睛) 钢筋 工程类 人工智能 运输工程 数学 数学分析 统计 物理 光学 结构工程
作者
Siyuan Chen,Meiling Wang,Wenjie Song,Yi Yang,Mengyin Fu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (10): 12615-12627 被引量:3
标识
DOI:10.1109/tvt.2023.3275582
摘要

In the past decade, reinforcement learning (RL) has achieved encouraging results in autonomous driving, especially in well-structured and regulated highway environments. However, few researches pay attention to RL-based multiple-vehicles cooperative driving, which is much more challenging because of dynamic real-time interactions and transient scenarios. This article proposes a Multi-Agent Reinforcement Learning (MARL) based twin-vehicles cooperative driving decision making method which achieves the generalization adaptation of the RL method in highly dynamic highway environments and enhances the flexibility and effectiveness of collaborative decision making system. The proposed fair cooperative MARL method pays equal attention to the individual intelligence and the cooperative performance, and employs a stable estimation method to reduce the propagation of overestimated joint $Q$ -values between agents. Thus, the twin-vehicles system strikes a balance between maintaining formation and free overtaking in dynamic highway environments, to intelligently adapt to different scenarios, such as heavy traffic, loose traffic, even some emergency. Targeted experiments show that our method has strong cooperative performance, also further increases the possibility of creating a harmonious driving environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一路生花完成签到,获得积分10
1秒前
luyuheng95完成签到,获得积分10
2秒前
3秒前
llp完成签到,获得积分20
5秒前
1680Y完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
自信的碧发布了新的文献求助10
7秒前
雪白紫夏完成签到,获得积分10
7秒前
研友_VZG7GZ应助整齐谷芹采纳,获得10
7秒前
欣欣欣完成签到,获得积分20
7秒前
bing完成签到,获得积分10
9秒前
希望天下0贩的0应助米娅采纳,获得10
11秒前
lym发布了新的文献求助10
11秒前
无花果应助kiki采纳,获得10
12秒前
13秒前
hpp完成签到,获得积分10
15秒前
旋转木马9个完成签到 ,获得积分10
15秒前
Unlung完成签到,获得积分10
16秒前
无花果应助和谐依珊采纳,获得10
16秒前
自信的碧完成签到,获得积分10
16秒前
17秒前
NexusExplorer应助Ghhhhn采纳,获得30
18秒前
瑁柏完成签到,获得积分10
18秒前
felix完成签到,获得积分10
19秒前
19秒前
JamesPei应助瑁柏采纳,获得10
21秒前
歌尔德蒙完成签到 ,获得积分10
21秒前
温暖的萤发布了新的文献求助50
22秒前
Judy完成签到 ,获得积分0
22秒前
NexusExplorer应助oneonlycrown采纳,获得10
23秒前
kinizu发布了新的文献求助10
23秒前
24秒前
白糖完成签到,获得积分10
25秒前
大恒完成签到,获得积分10
26秒前
今天只做一件事完成签到,获得积分0
29秒前
30秒前
30秒前
王一完成签到 ,获得积分10
31秒前
oneonlycrown发布了新的文献求助10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150