Multi-Agent Reinforcement Learning-Based Decision Making for Twin-Vehicles Cooperative Driving in Stochastic Dynamic Highway Environments

强化学习 灵活性(工程) 超车 一般化 计算机科学 适应(眼睛) 钢筋 工程类 人工智能 运输工程 数学 结构工程 统计 光学 物理 数学分析
作者
Siyuan Chen,Meiling Wang,Wenjie Song,Yi Yang,Mengyin Fu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (10): 12615-12627 被引量:3
标识
DOI:10.1109/tvt.2023.3275582
摘要

In the past decade, reinforcement learning (RL) has achieved encouraging results in autonomous driving, especially in well-structured and regulated highway environments. However, few researches pay attention to RL-based multiple-vehicles cooperative driving, which is much more challenging because of dynamic real-time interactions and transient scenarios. This article proposes a Multi-Agent Reinforcement Learning (MARL) based twin-vehicles cooperative driving decision making method which achieves the generalization adaptation of the RL method in highly dynamic highway environments and enhances the flexibility and effectiveness of collaborative decision making system. The proposed fair cooperative MARL method pays equal attention to the individual intelligence and the cooperative performance, and employs a stable estimation method to reduce the propagation of overestimated joint $Q$ -values between agents. Thus, the twin-vehicles system strikes a balance between maintaining formation and free overtaking in dynamic highway environments, to intelligently adapt to different scenarios, such as heavy traffic, loose traffic, even some emergency. Targeted experiments show that our method has strong cooperative performance, also further increases the possibility of creating a harmonious driving environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzzyy完成签到,获得积分10
刚刚
yufangwu发布了新的文献求助10
刚刚
YY88687321发布了新的文献求助10
刚刚
老年人发布了新的文献求助10
刚刚
搜集达人应助乐观的海采纳,获得10
刚刚
1秒前
九日科研ing完成签到,获得积分0
1秒前
chen完成签到,获得积分10
1秒前
Duke完成签到,获得积分10
1秒前
椰子发布了新的文献求助10
1秒前
1秒前
玛卡巴卡发布了新的文献求助10
1秒前
豆豆完成签到,获得积分10
2秒前
2秒前
小马甲应助懒洋洋采纳,获得10
2秒前
2秒前
ekdjk完成签到,获得积分10
2秒前
123关注了科研通微信公众号
3秒前
lcx完成签到,获得积分20
3秒前
3秒前
烟花应助鲤鱼紫真采纳,获得10
4秒前
李健应助kyo采纳,获得10
4秒前
万家顺发布了新的文献求助10
4秒前
小马甲应助郑文君52066采纳,获得10
4秒前
不抛弃不放弃完成签到,获得积分20
4秒前
4秒前
4秒前
BetterH发布了新的文献求助10
5秒前
nuo完成签到,获得积分20
5秒前
5秒前
5秒前
小羊烧鸡发布了新的文献求助10
5秒前
海绵君发布了新的文献求助10
5秒前
Simin发布了新的文献求助10
6秒前
6秒前
123发布了新的文献求助10
6秒前
蛙蛙完成签到,获得积分10
6秒前
qinkoko发布了新的文献求助10
6秒前
cqj123发布了新的文献求助10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5250675
求助须知:如何正确求助?哪些是违规求助? 4414986
关于积分的说明 13743512
捐赠科研通 4286407
什么是DOI,文献DOI怎么找? 2352015
邀请新用户注册赠送积分活动 1348844
关于科研通互助平台的介绍 1308370