残余应力
钨铬钴合金
材料科学
包层(金属加工)
复合材料
冶金
微观结构
作者
Olivia Kendall,Ralph Abrahams,Anna Paradowska,Mark Reid,Cong Qiu,Peter Mutton,Thomas Schläfer,Wenyi Yan
标识
DOI:10.1016/j.engfailanal.2023.107330
摘要
Rapid deterioration of critical rail components due to wear and fatigue is a significant challenge faced by the railway industry. Laser cladding has been applied to straight and curved light rail substrates which are particularly prone to these methods of degradation using a Stellite 21 hardfacing alloy. The influence of multi-layer cladding depositions, grinding-based finishing procedures and substrate rail grade on residual stress was analyzed using non-destructive neutron diffraction techniques. As cladding is a thermal process, microstructural changes from the heat inputs can result in a high internal stress state which reduces the loading capacity whilst a high hardness increases the likelihood of brittle failure. Stellite laser cladding depositions were found to result in low tensile residual stresses within the cladding layer, which become compressive in the heat affected zone (HAZ). Repeated thermal inputs from multi-layer cladding depositions did not negatively impact the hardness or microstructure after double layer laser cladding and increased the residual stress to 100 MPa at the cladding surface after grinding. Laser cladding on a curved rail substrate also produced increased internal stress after cladding due to higher strains resulting from the rail geometry but remained below the yield limit of the cladding and substrate material. These outcomes were compared to current literature indicating this critical combination of low internal strain and a cladding and HAZ hardness complementing the substrate material is difficult to achieve. Therefore, ensuring laser cladding is compatible with a variety of light rail components is essential in developing viable maintenance techniques to recondition critical railway infrastructure to avoid disruptive replacement procedures.
科研通智能强力驱动
Strongly Powered by AbleSci AI