Optimizing convolutional neural networks architecture using a modified particle swarm optimization for image classification

卷积神经网络 粒子群优化 超参数 水准点(测量) 计算机科学 人工智能 趋同(经济学) 人口 多群优化 加速 算法 数学优化 数学 并行计算 地理 社会学 人口学 经济 经济增长 大地测量学
作者
Djenaihi Elhani,Ahmed Chaouki Megherbi,Athmane Zitouni,Fadi Dornaika,Salim Sbaa,Abdelmalik Taleb-Ahmed
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:229: 120411-120411 被引量:10
标识
DOI:10.1016/j.eswa.2023.120411
摘要

Although Convolutional Neural Networks (CNNs) have been shown to be highly effective in image classification tasks, designing their architecture to achieve optimal results is often challenging. This process is time consuming, requires significant effort and expertise, and is complicated by the large number of hyperparameters. To address this problem, in this work we propose an approach that reduces human intervention and automatically generates the best CNN design. Our approach uses a variant of Particle Swarm Optimization (PSO), called Particle Swarm Optimization without Velocity (PSWV), to speed up convergence and reduce the number of iterations required to determine the optimal CNN hyperparameters. We developed a novel strategy to determine the updated position of each particle using a linear combination of the best position of the particle and the best position of the swarm without relying on the velocity equation. Our algorithm harnesses the power of the variable-length encoding strategy to represent particles within the population, thereby providing swift convergence towards the best architecture. We evaluate our proposed algorithm against several recent algorithms in the literature by using nine benchmark datasets for classification tasks and comparing it to 27 other algorithms, including state-of-the-art ones. Our experimental results show that our proposed method, pswvCNN, is able to quickly find effective CNN architectures that provide comparable performance to the best currently available designs, indicating its significant potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Ava应助苏栀采纳,获得10
2秒前
哎哟很烦完成签到,获得积分10
3秒前
laity完成签到,获得积分10
4秒前
放放完成签到,获得积分20
4秒前
4秒前
zhang值发布了新的文献求助10
4秒前
asdfghjkl发布了新的文献求助10
6秒前
7秒前
8秒前
rita_sun1969发布了新的文献求助20
8秒前
奋斗蝴蝶完成签到,获得积分10
8秒前
FashionBoy应助Knight采纳,获得10
9秒前
10秒前
11秒前
11秒前
12秒前
周周完成签到,获得积分10
13秒前
Jayya发布了新的文献求助10
14秒前
冰柠檬发布了新的文献求助10
14秒前
1111发布了新的文献求助10
14秒前
花城完成签到,获得积分10
15秒前
YXC999发布了新的文献求助10
15秒前
xxxx发布了新的文献求助10
15秒前
16秒前
FashionBoy应助Sencetich采纳,获得10
17秒前
17秒前
871004188完成签到,获得积分10
18秒前
香蕉觅云应助WAN采纳,获得10
19秒前
崔崔发布了新的文献求助10
21秒前
23秒前
24秒前
lianqing发布了新的文献求助10
24秒前
大水发布了新的文献求助10
25秒前
25秒前
26秒前
汉堡包应助柒八染采纳,获得10
26秒前
xiaoxiao发布了新的文献求助10
26秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049