Paving the way for technological innovation through adoption of artificial intelligence in conservative industries

价值(数学) 期望理论 可靠性(半导体) 工业革命 适度 经济 产业组织 业务 营销 工程类 运营管理 计算机科学 管理 政治学 机器学习 物理 量子力学 功率(物理) 法学
作者
Ali Nawaz Khan,Fauzia Jabeen,Khalid Mehmood,Mohsin Ali Soomro,Stefano Bresciani
出处
期刊:Journal of Business Research [Elsevier]
卷期号:165: 114019-114019 被引量:71
标识
DOI:10.1016/j.jbusres.2023.114019
摘要

Artificial Intelligence (AI) has emerged as a distinct form of ICT, revolutionizing manufacturing to the fourth industrial revolution. However, inherently complex and time-constrained operations restrict conservative industries from embracing AI transformation, leading to technological innovation. This study attempts to pave the way for AI transformation (leading to technological innovation) in conservative industries by developing and testing a value-based theoretical AI adoption framework. The proposed framework incorporates functional and conditional values as predictors to assess the industrial AI’s fitness to the conservative industry need. Service reliability is taken as a moderator to assess AI acceptance’s intention impact on its consistent use in routine operations in conservative industries. The model was tested in the construction and oil gas industries. A total number of 480 samples were collected from Pakistan. The results have indicated functional value as a significant predictor of the way forward with AI transformation in conservative industries. The other process variables like price value and performance expectancy have shown what drives AI acceptance intention in a conservative industry. The results also found service reliability as a necessity for the sustained use of AI in conservative industries. The findings provide useful insights for industrial AI companies on how such conservative industries envisage AI as a technological innovation and a potential solution to their problem. The framework shall also help conservative industries in evaluating potential AI proposals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cwq发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
小青发布了新的文献求助10
1秒前
1秒前
顺利含玉发布了新的文献求助10
1秒前
CodeCraft应助壮观砖家采纳,获得10
1秒前
wanci应助张大旺采纳,获得10
2秒前
2秒前
一只眠羊完成签到,获得积分10
2秒前
2秒前
Nat发布了新的文献求助10
2秒前
3秒前
hhh发布了新的文献求助10
3秒前
3秒前
3秒前
Starain完成签到,获得积分10
3秒前
安静契完成签到,获得积分20
4秒前
徐老师完成签到,获得积分10
4秒前
4秒前
2哇哇哇发布了新的文献求助10
4秒前
迪迦发布了新的文献求助10
4秒前
思源应助sunyanghu369采纳,获得10
4秒前
JY发布了新的文献求助10
5秒前
羽寞发布了新的文献求助10
5秒前
心灵美天奇完成签到 ,获得积分10
5秒前
5秒前
华仔发布了新的文献求助10
6秒前
SciGPT应助江苏大猩猩采纳,获得10
6秒前
lkl发布了新的文献求助10
6秒前
浮浮世世发布了新的文献求助10
6秒前
小章完成签到 ,获得积分10
6秒前
ding应助湖里鱼采纳,获得10
7秒前
7秒前
7秒前
卡布奇诺发布了新的文献求助20
7秒前
1234发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271