Multi-modal policy fusion for end-to-end autonomous driving

计算机科学 自编码 保险丝(电气) 特征(语言学) 人工智能 强化学习 情态动词 端到端原则 机器学习 传感器融合 理论(学习稳定性) 人工神经网络 工程类 电气工程 哲学 语言学 化学 高分子化学
作者
Ziming Huang,Shiliang Sun,Jing Zhao,Liang Mao
出处
期刊:Information Fusion [Elsevier BV]
卷期号:98: 101834-101834 被引量:18
标识
DOI:10.1016/j.inffus.2023.101834
摘要

Multi-modal learning has made impressive progress in autonomous driving by leveraging information from multiple sensors. Existing feature fusion methods make decisions by integrating perceptions from different sensors. However, autonomous driving systems could be risky since the fused feature are unreliable when one of the sensors fails. Moreover, these methods require either sophisticated geometric designs to align features or complex neural networks to effectively fuse features, significantly increasing the training cost. In this paper, we propose PolicyFuser, a policy fusion method for end-to-end autonomous driving to address these issues. PolicyFuser retains an independent decision for each sensor, and no feature alignment or complex neural networks are required. To focus on the best policy, we use reinforcement learning to select the action with the highest Q-value as the primary decision, and the remaining actions as the secondary decisions. Then the secondary decisions are used to fine-tune the primary decision through a primary and secondary policy fusion (PSF) module. To bridge the gap between the decisions from different sensors and improve the stability of policy fusion, we use a conditional variational autoencoder (CVAE) to generate pseudo-expert decisions. We demonstrate the effectiveness of our method in CARLA, and our method achieves the highest driving scores and handles sensor failures with excellence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
朴实思春发布了新的文献求助10
刚刚
1秒前
852应助积极的远山采纳,获得10
1秒前
some完成签到,获得积分10
1秒前
业余研究生完成签到,获得积分20
1秒前
1秒前
宾克斯完成签到,获得积分10
1秒前
2秒前
2秒前
C胖胖完成签到,获得积分10
2秒前
陌上完成签到 ,获得积分10
3秒前
稳重傲柔完成签到,获得积分10
3秒前
A1234567完成签到,获得积分10
4秒前
wdb发布了新的文献求助10
4秒前
maomao驳回了馒头应助
4秒前
高大一一完成签到,获得积分10
4秒前
anpucle发布了新的文献求助10
5秒前
Rosechanel发布了新的文献求助10
5秒前
6秒前
坚持坚持完成签到 ,获得积分10
6秒前
Owen应助Vizz采纳,获得10
6秒前
11发布了新的文献求助10
7秒前
XX关注了科研通微信公众号
7秒前
超级的诗兰完成签到,获得积分10
7秒前
9秒前
9秒前
哇哈哈完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
在水一方应助zilhua采纳,获得10
10秒前
11发布了新的文献求助10
11秒前
一天五顿饭完成签到,获得积分10
11秒前
12秒前
素歌发布了新的文献求助10
12秒前
卞卞发布了新的文献求助150
12秒前
aluo发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958799
求助须知:如何正确求助?哪些是违规求助? 3504983
关于积分的说明 11121652
捐赠科研通 3236440
什么是DOI,文献DOI怎么找? 1788768
邀请新用户注册赠送积分活动 871373
科研通“疑难数据库(出版商)”最低求助积分说明 802723