Unrolling a rain-guided detail recovery network for singleimage deraining

计算机科学 水准点(测量) 背景(考古学) 过程(计算) 任务(项目管理) 人工智能 编码器 图像(数学) 深度学习 模式识别(心理学) 操作系统 古生物学 经济 管理 地理 生物 大地测量学
作者
Kailong Lin,Shaowei Zhang,Yu Luo,Jie Ling
出处
期刊:Virtual Reality & Intelligent Hardware [Elsevier]
卷期号:5 (1): 11-23 被引量:1
标识
DOI:10.1016/j.vrih.2022.06.002
摘要

Owing to the rapid development of deep networks, single image deraining tasks have achieved significant progress. Various architectures have been designed to recursively or directly remove rain, and most rain streaks can be removed by existing deraining methods. However, many of them cause a loss of details during deraining, resulting in visual artifacts. To resolve the detail-losing issue, we propose a novel unrolling rain-guided detail recovery network (URDRN) for single image deraining based on the observation that the most degraded areas of the background image tend to be the most rain-corrupted regions. Furthermore, to address the problem that most existing deep-learning-based methods trivialize the observation model and simply learn an end-to-end mapping, the proposed URDRN unrolls the single image deraining task into two subproblems: rain extraction and detail recovery. Specifically, first, a context aggregation attention network is introduced to effectively extract rain streaks, and then, a rain attention map is generated as an indicator to guide the detail-recovery process. For a detail-recovery sub-network, with the guidance of the rain attention map, a simple encoder–decoder model is sufficient to recover the lost details. Experiments on several well-known benchmark datasets show that the proposed approach can achieve a competitive performance in comparison with other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助hhh采纳,获得10
1秒前
1秒前
小茗同学完成签到,获得积分10
2秒前
3秒前
欢喜傲易完成签到,获得积分10
3秒前
ding应助科研通管家采纳,获得10
3秒前
苹果音响发布了新的文献求助30
3秒前
顾矜应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
不安青牛应助科研通管家采纳,获得10
5秒前
诸糜发布了新的文献求助10
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
圆锥香蕉应助科研通管家采纳,获得20
5秒前
科研通AI6应助才下眉头采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
赘婿应助wuti采纳,获得10
5秒前
LiLi完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624193
求助须知:如何正确求助?哪些是违规求助? 4710059
关于积分的说明 14949218
捐赠科研通 4778004
什么是DOI,文献DOI怎么找? 2553171
邀请新用户注册赠送积分活动 1515043
关于科研通互助平台的介绍 1475458