亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unrolling a rain-guided detail recovery network for singleimage deraining

计算机科学 水准点(测量) 背景(考古学) 过程(计算) 任务(项目管理) 人工智能 编码器 图像(数学) 深度学习 模式识别(心理学) 操作系统 古生物学 经济 管理 地理 生物 大地测量学
作者
Kailong Lin,Shaowei Zhang,Yu Luo,Jie Ling
出处
期刊:Virtual Reality & Intelligent Hardware [Elsevier]
卷期号:5 (1): 11-23 被引量:1
标识
DOI:10.1016/j.vrih.2022.06.002
摘要

Owing to the rapid development of deep networks, single image deraining tasks have achieved significant progress. Various architectures have been designed to recursively or directly remove rain, and most rain streaks can be removed by existing deraining methods. However, many of them cause a loss of details during deraining, resulting in visual artifacts. To resolve the detail-losing issue, we propose a novel unrolling rain-guided detail recovery network (URDRN) for single image deraining based on the observation that the most degraded areas of the background image tend to be the most rain-corrupted regions. Furthermore, to address the problem that most existing deep-learning-based methods trivialize the observation model and simply learn an end-to-end mapping, the proposed URDRN unrolls the single image deraining task into two subproblems: rain extraction and detail recovery. Specifically, first, a context aggregation attention network is introduced to effectively extract rain streaks, and then, a rain attention map is generated as an indicator to guide the detail-recovery process. For a detail-recovery sub-network, with the guidance of the rain attention map, a simple encoder–decoder model is sufficient to recover the lost details. Experiments on several well-known benchmark datasets show that the proposed approach can achieve a competitive performance in comparison with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
jyy发布了新的文献求助10
1秒前
脏脏鲤完成签到 ,获得积分10
2秒前
浮游应助hi采纳,获得10
4秒前
王威发布了新的文献求助10
7秒前
SKY发布了新的文献求助30
8秒前
8秒前
8秒前
明朗完成签到 ,获得积分10
9秒前
王津丹发布了新的文献求助10
13秒前
hi完成签到,获得积分10
15秒前
SKY完成签到,获得积分10
16秒前
王津丹完成签到,获得积分10
20秒前
香蕉觅云应助青城粘豆包采纳,获得10
30秒前
31秒前
32秒前
38秒前
HSX完成签到,获得积分10
39秒前
43秒前
56秒前
58秒前
luohao完成签到,获得积分10
1分钟前
Ava应助王威采纳,获得10
1分钟前
1分钟前
加菲丰丰应助王威采纳,获得10
1分钟前
加菲丰丰应助王威采纳,获得80
1分钟前
加菲丰丰应助王威采纳,获得10
1分钟前
呱呱完成签到,获得积分10
1分钟前
加菲丰丰应助王威采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
陶醉友蕊发布了新的文献求助10
1分钟前
2分钟前
2分钟前
lwm不想看文献完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469990
求助须知:如何正确求助?哪些是违规求助? 4572966
关于积分的说明 14337858
捐赠科研通 4499845
什么是DOI,文献DOI怎么找? 2465425
邀请新用户注册赠送积分活动 1453770
关于科研通互助平台的介绍 1428347