Unrolling a rain-guided detail recovery network for singleimage deraining

计算机科学 水准点(测量) 背景(考古学) 过程(计算) 任务(项目管理) 人工智能 编码器 图像(数学) 深度学习 模式识别(心理学) 操作系统 古生物学 经济 管理 地理 生物 大地测量学
作者
Kailong Lin,Shaowei Zhang,Yu Luo,Jie Ling
出处
期刊:Virtual Reality & Intelligent Hardware [Elsevier]
卷期号:5 (1): 11-23 被引量:1
标识
DOI:10.1016/j.vrih.2022.06.002
摘要

Owing to the rapid development of deep networks, single image deraining tasks have achieved significant progress. Various architectures have been designed to recursively or directly remove rain, and most rain streaks can be removed by existing deraining methods. However, many of them cause a loss of details during deraining, resulting in visual artifacts. To resolve the detail-losing issue, we propose a novel unrolling rain-guided detail recovery network (URDRN) for single image deraining based on the observation that the most degraded areas of the background image tend to be the most rain-corrupted regions. Furthermore, to address the problem that most existing deep-learning-based methods trivialize the observation model and simply learn an end-to-end mapping, the proposed URDRN unrolls the single image deraining task into two subproblems: rain extraction and detail recovery. Specifically, first, a context aggregation attention network is introduced to effectively extract rain streaks, and then, a rain attention map is generated as an indicator to guide the detail-recovery process. For a detail-recovery sub-network, with the guidance of the rain attention map, a simple encoder–decoder model is sufficient to recover the lost details. Experiments on several well-known benchmark datasets show that the proposed approach can achieve a competitive performance in comparison with other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪航空发布了新的文献求助10
2秒前
linlin发布了新的文献求助10
3秒前
HB发布了新的文献求助10
3秒前
清脆乐曲完成签到,获得积分10
4秒前
felix发布了新的文献求助10
5秒前
科研通AI6应助sssshhh采纳,获得10
6秒前
lucygaga完成签到 ,获得积分10
8秒前
9秒前
9秒前
科研通AI6应助Xjx6519采纳,获得20
9秒前
魔幻冰棍发布了新的文献求助10
11秒前
BowieHuang应助白白采纳,获得10
11秒前
mirrovo完成签到 ,获得积分10
11秒前
自然的平蓝完成签到,获得积分10
13秒前
深情安青应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
Linos应助科研通管家采纳,获得10
15秒前
蓝天应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
蓝天应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
爆米花应助1816013153采纳,获得30
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
蓝天应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
科研菜j应助科研通管家采纳,获得20
16秒前
wanci应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
蓝天应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
Duke_ethan完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557938
求助须知:如何正确求助?哪些是违规求助? 4642910
关于积分的说明 14669614
捐赠科研通 4584414
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1488970
关于科研通互助平台的介绍 1459614