Unrolling a rain-guided detail recovery network for singleimage deraining

计算机科学 水准点(测量) 背景(考古学) 过程(计算) 任务(项目管理) 人工智能 编码器 图像(数学) 深度学习 模式识别(心理学) 操作系统 古生物学 经济 管理 地理 生物 大地测量学
作者
Kailong Lin,Shaowei Zhang,Yu Luo,Jie Ling
出处
期刊:Virtual Reality & Intelligent Hardware [Elsevier]
卷期号:5 (1): 11-23 被引量:1
标识
DOI:10.1016/j.vrih.2022.06.002
摘要

Owing to the rapid development of deep networks, single image deraining tasks have achieved significant progress. Various architectures have been designed to recursively or directly remove rain, and most rain streaks can be removed by existing deraining methods. However, many of them cause a loss of details during deraining, resulting in visual artifacts. To resolve the detail-losing issue, we propose a novel unrolling rain-guided detail recovery network (URDRN) for single image deraining based on the observation that the most degraded areas of the background image tend to be the most rain-corrupted regions. Furthermore, to address the problem that most existing deep-learning-based methods trivialize the observation model and simply learn an end-to-end mapping, the proposed URDRN unrolls the single image deraining task into two subproblems: rain extraction and detail recovery. Specifically, first, a context aggregation attention network is introduced to effectively extract rain streaks, and then, a rain attention map is generated as an indicator to guide the detail-recovery process. For a detail-recovery sub-network, with the guidance of the rain attention map, a simple encoder–decoder model is sufficient to recover the lost details. Experiments on several well-known benchmark datasets show that the proposed approach can achieve a competitive performance in comparison with other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Sindy采纳,获得10
刚刚
刚刚
刚刚
周周完成签到,获得积分20
1秒前
1秒前
情怀应助彬彬采纳,获得10
2秒前
666xjt完成签到,获得积分20
2秒前
2秒前
科研通AI6应助睦月采纳,获得10
2秒前
搞怪天真完成签到,获得积分10
2秒前
小二郎应助王润萌采纳,获得30
2秒前
JamesPei应助风铃鸟采纳,获得10
2秒前
时米米米发布了新的文献求助10
2秒前
脆脆鲨发布了新的文献求助10
2秒前
3秒前
3秒前
H宇婷完成签到,获得积分10
3秒前
内向灵凡发布了新的文献求助10
3秒前
鹿岁岁呀发布了新的文献求助10
3秒前
4秒前
如是之人发布了新的文献求助10
4秒前
lius发布了新的文献求助10
4秒前
鹿儿飞发布了新的文献求助10
5秒前
FashionBoy应助淡定沛珊采纳,获得10
5秒前
5秒前
Orange应助王kk采纳,获得10
5秒前
5秒前
5秒前
6秒前
xiaoxinbaba发布了新的文献求助10
6秒前
6秒前
彩卷卷发布了新的文献求助10
6秒前
可爱千兰完成签到,获得积分10
6秒前
treasure完成签到 ,获得积分20
6秒前
耍酷的梦之完成签到,获得积分10
7秒前
思源应助机智谷蕊采纳,获得10
7秒前
7秒前
7秒前
7秒前
haha发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576645
求助须知:如何正确求助?哪些是违规求助? 4662026
关于积分的说明 14739107
捐赠科研通 4602583
什么是DOI,文献DOI怎么找? 2525877
邀请新用户注册赠送积分活动 1495813
关于科研通互助平台的介绍 1465448