Application of stable isotope and mineral element fingerprint in identification of Hainan camellia oil producing area based on convolutional neural networks

油茶 环境科学 山茶花 数学 植物 生物
作者
Jiashun Fu,Junhao Wang,Zhe Chen,Zhuowen Deng,Hanggui Lai,Liangxiao Zhang,Yong‐Huan Yun,Chenghui Zhang
出处
期刊:Food Control [Elsevier]
卷期号:150: 109744-109744 被引量:13
标识
DOI:10.1016/j.foodcont.2023.109744
摘要

Camellia oil is a unique high-end woody edible vegetable oil in China. In particular, camellia oil from Hainan is recognized as having unique quality and high value. Protecting the authenticity of its origin is essential to ensure the reputation and quality safety of the Hainan camellia oil market. Thus, we explored the potential of stable isotopes and mineral elements to origin traceability of camellia oil from Hainan, and analyzed the three stable isotopes and 21 mineral elements of camellia oil using stable isotope mass spectrometer and inductively coupled plasma mass spectrometer. The results showed that there were significant regional differences in stable isotope ratios and mineral element contents of camellia oil from different areas. The constructed convolutional neural network (CNN) model showed higher classification accuracy than other common classification models including orthogonal partial least squares discriminant analysis (OPLS-DA), support vector machine (SVM) and random forest. It not only distinguished the camellia oil from Hainan and other main producing areas with an accuracy of 93.33%, but also correctly identified the camellia oil from various regions in Hainan with an accuracy of 98.57%. Our research showed that stable isotope and mineral element characteristics were efficient indicators for identifying the geographic origin of camellia oil, and helped to fill the gap in the identification of camellia oil origin in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关关完成签到,获得积分10
刚刚
科研小白完成签到,获得积分10
刚刚
刚刚
快乐水完成签到,获得积分10
刚刚
1秒前
爱撒娇的长颈鹿完成签到,获得积分10
1秒前
1秒前
青一完成签到 ,获得积分10
1秒前
2秒前
阿皮完成签到,获得积分10
3秒前
林夕发布了新的文献求助10
3秒前
虚拟的绫完成签到,获得积分10
3秒前
高点点发布了新的文献求助10
3秒前
搬石头完成签到,获得积分10
3秒前
科研通AI2S应助飘逸的巧凡采纳,获得10
4秒前
rosalieshi应助飘逸的巧凡采纳,获得30
4秒前
完美世界应助二蛋采纳,获得30
4秒前
平淡寻菡发布了新的文献求助10
4秒前
一一完成签到,获得积分10
4秒前
4秒前
平淡问寒发布了新的文献求助10
5秒前
moruifei完成签到,获得积分10
5秒前
宋1234发布了新的文献求助10
6秒前
希子完成签到 ,获得积分10
6秒前
chenlin完成签到,获得积分10
7秒前
melo完成签到,获得积分10
8秒前
8R60d8应助王大人很白采纳,获得10
8秒前
MoodMeed完成签到,获得积分10
10秒前
万能图书馆应助关关采纳,获得10
10秒前
tao完成签到,获得积分10
12秒前
流苏完成签到,获得积分10
12秒前
花的微笑完成签到,获得积分10
12秒前
账户已注销应助qiuling采纳,获得30
13秒前
林夕完成签到,获得积分10
13秒前
麋鹿完成签到 ,获得积分10
13秒前
晚风中追风完成签到,获得积分10
13秒前
14秒前
大意的羊完成签到,获得积分10
15秒前
duoduo完成签到,获得积分10
15秒前
小飞完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134153
求助须知:如何正确求助?哪些是违规求助? 2785006
关于积分的说明 7769763
捐赠科研通 2440543
什么是DOI,文献DOI怎么找? 1297440
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792