钝化
臭氧
硅
氧化物
材料科学
分析化学(期刊)
纳米技术
图层(电子)
化学
光电子学
有机化学
冶金
作者
Munan Gao,Vibhor Kumar,Winston V. Schoenfeld,Ngwe Zin
出处
期刊:IEEE Journal of Photovoltaics
日期:2023-05-01
卷期号:13 (3): 385-390
标识
DOI:10.1109/jphotov.2023.3244370
摘要
We demonstrate the versatile use of UV-ozone oxide (UVo) in surface cleaning, surface passivation, diffused junction passivation, and current tunneling applications of crystalline silicon (c-Si) solar cells. A UV-ozone generated oxide is used as a surface clean for random textured c-Si samples and the effectiveness of surface clean is determined by capping with a thin layer of aluminum oxide (AlO x ). Our developed UVo clean has resulted in a cleaning efficiency almost comparable to that of the benchmarked RCA clean, yielding a saturation current density of 12 fA/cm 2 . When planar and textured c-Si samples are capped by a stack of UVo and AlO x , a UV-ozone growth time of no more than 3 min is found to provide an optimum surface passivation. When tested on phosphorus and boron diffused junctions (with sheet resistance, R sh of 110–120 $\Omega\!/\!{\scriptstyle\square} $ ), the UVo and AlO x stack resulted in a J 0 of 11 fA/cm 2 or lower. The high-resolution transmission electron microscope imaging revealed that UVo structure is stable upon annealing for passivation activation. Last, when applied as a tunneling contact, the UVo realizes a contact resistivity ( ρc ) of ∼1 mΩ-cm 2 and ∼20 mΩ-cm 2 for boron and phosphorus doped metal-insulator-semiconductor contact structures, respectively, with moderately doped diffusions.
科研通智能强力驱动
Strongly Powered by AbleSci AI