A learnable sampling method for scalable graph neural networks

计算机科学 可扩展性 人工神经网络 消息传递 图形 人工智能 采样(信号处理) 算法 理论计算机科学 分布式计算 计算机视觉 数据库 滤波器(信号处理)
作者
Weichen Zhao,Tiande Guo,Xiaoxi Yu,Congying Han
出处
期刊:Neural Networks [Elsevier]
卷期号:162: 412-424 被引量:7
标识
DOI:10.1016/j.neunet.2023.03.015
摘要

With the development of graph neural networks, how to handle large-scale graph data has become an increasingly important topic. Currently, most graph neural network models which can be extended to large-scale graphs are based on random sampling methods. However, the sampling process in these models is detached from the forward propagation of neural networks. Moreover, quite a few works design sampling based on statistical estimation methods for graph convolutional networks and the weights of message passing in GCNs nodes are fixed, making these sampling methods not scalable to message passing networks with variable weights, such as graph attention networks. Noting the end-to-end learning capability of neural networks, we propose a learnable sampling method. It solves the problem that random sampling operations cannot calculate gradients and samples nodes with an unfixed probability. In this way, the sampling process is dynamically combined with the forward propagation process of the features, allowing for better training of the networks. And it can be generalized to all message passing models. In addition, we apply the learnable sampling method to GNNs and propose two models. Our method can be flexibly combined with different graph neural network models and achieves excellent accuracy on benchmark datasets with large graphs. Meanwhile, loss function converges to smaller values at a faster rate during training than past methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hqq131456发布了新的文献求助10
刚刚
2秒前
xuye62发布了新的文献求助10
3秒前
3秒前
5秒前
lani完成签到 ,获得积分10
5秒前
吴兰田完成签到,获得积分10
6秒前
Ava应助甜蜜的金连采纳,获得10
7秒前
万能图书馆应助M先生采纳,获得10
9秒前
YY发布了新的文献求助10
10秒前
Zero完成签到 ,获得积分10
11秒前
平淡的鸿完成签到,获得积分10
11秒前
干净芹菜完成签到 ,获得积分10
11秒前
fiife应助xuye62采纳,获得10
12秒前
喵喵完成签到,获得积分10
13秒前
15秒前
华圆圆完成签到,获得积分10
15秒前
15秒前
姚哈哈完成签到 ,获得积分10
16秒前
17秒前
xiao完成签到,获得积分10
19秒前
20秒前
20秒前
港岛妹夫发布了新的文献求助10
21秒前
着急的猴发布了新的文献求助10
21秒前
22秒前
FashionBoy应助高兴的向秋采纳,获得10
23秒前
皮蛋发布了新的文献求助10
23秒前
丫丫发布了新的文献求助10
23秒前
24秒前
Serena完成签到 ,获得积分10
25秒前
斯文败类应助mhpvv采纳,获得10
26秒前
26秒前
28秒前
28秒前
亚鹏完成签到,获得积分10
28秒前
M先生发布了新的文献求助10
29秒前
30秒前
黎金鑫完成签到,获得积分10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589907
求助须知:如何正确求助?哪些是违规求助? 4674376
关于积分的说明 14793616
捐赠科研通 4629217
什么是DOI,文献DOI怎么找? 2532436
邀请新用户注册赠送积分活动 1501101
关于科研通互助平台的介绍 1468527