清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A learnable sampling method for scalable graph neural networks

计算机科学 可扩展性 人工神经网络 消息传递 图形 人工智能 采样(信号处理) 算法 理论计算机科学 分布式计算 计算机视觉 数据库 滤波器(信号处理)
作者
Weichen Zhao,Tiande Guo,Xiaoxi Yu,Congying Han
出处
期刊:Neural Networks [Elsevier BV]
卷期号:162: 412-424 被引量:7
标识
DOI:10.1016/j.neunet.2023.03.015
摘要

With the development of graph neural networks, how to handle large-scale graph data has become an increasingly important topic. Currently, most graph neural network models which can be extended to large-scale graphs are based on random sampling methods. However, the sampling process in these models is detached from the forward propagation of neural networks. Moreover, quite a few works design sampling based on statistical estimation methods for graph convolutional networks and the weights of message passing in GCNs nodes are fixed, making these sampling methods not scalable to message passing networks with variable weights, such as graph attention networks. Noting the end-to-end learning capability of neural networks, we propose a learnable sampling method. It solves the problem that random sampling operations cannot calculate gradients and samples nodes with an unfixed probability. In this way, the sampling process is dynamically combined with the forward propagation process of the features, allowing for better training of the networks. And it can be generalized to all message passing models. In addition, we apply the learnable sampling method to GNNs and propose two models. Our method can be flexibly combined with different graph neural network models and achieves excellent accuracy on benchmark datasets with large graphs. Meanwhile, loss function converges to smaller values at a faster rate during training than past methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
31秒前
华老师发布了新的文献求助10
35秒前
天天快乐应助华老师采纳,获得10
40秒前
华老师完成签到,获得积分20
46秒前
jasmine完成签到 ,获得积分10
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
研友_892kOL完成签到,获得积分10
2分钟前
2分钟前
webmaster完成签到,获得积分10
2分钟前
zgx完成签到 ,获得积分10
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
4分钟前
4分钟前
书生完成签到,获得积分10
5分钟前
冬去春来完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
lilaccalla完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
7分钟前
7分钟前
伏城完成签到 ,获得积分10
7分钟前
丘比特应助科研通管家采纳,获得10
7分钟前
科研通AI5应助淡定友有采纳,获得10
8分钟前
华仔应助kmkm采纳,获得10
9分钟前
幽默的太阳完成签到 ,获得积分10
9分钟前
脑洞疼应助科研通管家采纳,获得10
9分钟前
英姑应助科研通管家采纳,获得10
9分钟前
通科研完成签到 ,获得积分10
10分钟前
10分钟前
kmkm发布了新的文献求助10
10分钟前
10分钟前
快飞飞完成签到 ,获得积分10
10分钟前
10分钟前
jyf发布了新的文献求助10
10分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155708
捐赠科研通 3245416
什么是DOI,文献DOI怎么找? 1792891
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216