中性粒细胞胞外陷阱
血红素
血小板活化
血小板
免疫学
医学
炎症
化学
生物化学
酶
作者
Somanathapura K. NaveenKumar,Mahadevappa Hemshekhar,Bidare N. Sharathbabu,Kempaiah Kemparaju,Govindasamy Mugesh,Kesturu S. Girish
标识
DOI:10.1016/j.bbadis.2023.166688
摘要
Cell-free heme (CFH) is a product of hemoglobin, myoglobin and hemoprotein degradation, which is a hallmark of pathologies associated with extensive hemolysis and tissue damage. CHF and iron collectively induce cytokine storm, lung injury, respiratory distress and infection susceptibility in the lungs suggesting their key role in the progression of lung disease pathology. We have previously demonstrated that heme-mediated reactive oxygen species (ROS) induces platelet activation and ferroptosis. However, interaction of ferroptotic platelets and neutrophils, the mechanism of action and associated complications remain unclear. In this study, we demonstrate that heme-induced P-selectin expression and Phosphatidylserine (PS) externalization in platelets via ASK-1-inflammasome axis increases platelet-neutrophil aggregates in circulation, resulting in Neutrophil extracellular traps (NET) formation in vitro and in vivo. Further, heme-induced platelet activation in mice increased platelet-neutrophil aggregates and accumulation of NETs in the lungs causing pulmonary damage. Thus, connecting CFH-mediated platelet activation to NETosis and pulmonary thrombosis. As lung infections induce acute respiratory stress, thrombosis and NETosis, we propose that heme -mediated platelet activation and ferroptosis might be crucial in such clinical manifestations. Further, considering the ability of redox modulators and ferroptosis inhibitors like FS-1, Lpx-1 and DFO to inhibit heme-induced ferroptotic platelets-mediated NETosis and pulmonary thrombosis. They could be potential adjuvant therapy to regulate respiratory distress-associated clinical complications.
科研通智能强力驱动
Strongly Powered by AbleSci AI