亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Good, the Bad, and the Unhirable: Recommending Job Applicants in Online Labor Markets

推荐系统 概化理论 背景(考古学) 计算机科学 工作分析 机器学习 经济 心理学 工作满意度 古生物学 发展心理学 管理 生物
作者
Marios Kokkodis,Panagiotis G. Ipeirotis
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (11): 6969-6987 被引量:5
标识
DOI:10.1287/mnsc.2023.4690
摘要

Choosing job applicants to hire in online labor markets is hard. To identify the best applicant at hand, employers need to assess a heterogeneous population. Recommender systems can provide targeted job-applicant recommendations that help employers make better-informed and faster hiring choices. However, existing recommenders that rely on multiple user evaluations per recommended item (e.g., collaborative filtering) experience structural limitations in recommending job applicants: Because each job application receives only a single evaluation, these recommenders can only estimate noisy user-user and item-item similarities. On the other hand, existing recommenders that rely on classification techniques overcome this limitation. Yet, these systems ignore the hired worker’s performance—and, as a result, they uniformly reinforce prior observed behavior that includes unsuccessful hiring choices—while they overlook potential sequential dependencies between consecutive choices of the same employer. This work addresses these shortcomings by building a framework that uses job-application characteristics to provide recommendations that (1) are unlikely to yield adverse outcomes (performance-aware) and (2) capture the potentially evolving hiring preferences of employers (sequence-aware). Application of this framework on hiring decisions from an online labor market shows that it recommends job applicants who are likely to get hired and perform well. A comparison with advanced alternative recommender systems illustrates the benefits of modeling performance-aware and sequence-aware recommendations. An empirical adaptation of our approach in an alternative context (restaurant recommendations) illustrates its generalizability and highlights its potential implications for users, employers, workers, and markets. This paper was accepted by Kartik Hosanagar, information systems. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2023.4690 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加菲丰丰应助科研通管家采纳,获得20
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
37秒前
SciGPT应助体贴花卷采纳,获得10
42秒前
joanna完成签到,获得积分10
49秒前
1分钟前
单纯的小甜完成签到,获得积分10
1分钟前
1分钟前
语嘘嘘发布了新的文献求助50
1分钟前
34101127完成签到 ,获得积分10
2分钟前
儒雅HR完成签到 ,获得积分10
2分钟前
儒雅HR关注了科研通微信公众号
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
天天天才完成签到,获得积分10
2分钟前
lalaheilala完成签到 ,获得积分10
2分钟前
daishuheng完成签到 ,获得积分10
3分钟前
领导范儿应助儒雅HR采纳,获得10
3分钟前
小蘑菇应助蓝色的多崎作采纳,获得10
4分钟前
4分钟前
4分钟前
勤恳惮完成签到,获得积分10
4分钟前
善学以致用应助揍鱼采纳,获得10
4分钟前
JamesPei应助青葱年华rr采纳,获得30
4分钟前
sun完成签到,获得积分20
4分钟前
Ava应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
揍鱼发布了新的文献求助10
4分钟前
852应助达达利亚采纳,获得10
4分钟前
4分钟前
揍鱼完成签到,获得积分10
4分钟前
4分钟前
5分钟前
超级mxl发布了新的文献求助10
5分钟前
共享精神应助超级mxl采纳,获得10
5分钟前
5分钟前
烨枫晨曦完成签到,获得积分10
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314391
求助须知:如何正确求助?哪些是违规求助? 2946633
关于积分的说明 8531143
捐赠科研通 2622373
什么是DOI,文献DOI怎么找? 1434483
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881