Automatic Detection of Steatosis in Ultrasound Images with Comparative Visual Labeling

计算机科学 人工智能 脂肪变性 脂肪变 模式识别(心理学) 图像(数学) 计算机视觉 病理 脂肪肝 医学 内科学 疾病
作者
Güinther Saibro,Michèle Diana,B. Sauer,Jacques Marescaux,Alexandre Hostettler,Toby Collins
出处
期刊:Lecture Notes in Computer Science 卷期号:: 408-418
标识
DOI:10.1007/978-3-031-16437-8_39
摘要

A common difficulty in computer-assisted diagnosis is acquiring accurate and representative labeled data, required to train, test and monitor models. Concerning liver steatosis detection in ultrasound (US) images, labeling images with human annotators can be error-prone because of subjectivity and decision boundary biases. To overcome these limits, we propose comparative visual labeling (CVL), where an annotator labels the relative degree of a pathology in image pairs, that is combined with a RankNet to give per-image diagnostic scores. In a multi-annotator evaluation on a public steatosis dataset, CVL+RankNet significantly improves label quality compared to conventional single-image visual labeling (SVL) (0.97 versus 0.87 F1-score respectively, 95% CI significance). This is the first application of CVL for diagnostic medical image labeling, and it may stimulate more research for other diagnostic labeling tasks. We also show that Deep Learning (DL) models trained with CVL+RankNet or histopathology labels attain similar performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
a龙完成签到,获得积分10
刚刚
眯眯眼的老鼠完成签到,获得积分20
刚刚
无花果应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
1秒前
wanci应助嗯哼采纳,获得10
1秒前
nanan完成签到,获得积分10
1秒前
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
Hungrylunch应助科研通管家采纳,获得20
1秒前
Cassie应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
暴躁四叔应助科研通管家采纳,获得20
1秒前
Zn应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
Zn应助科研通管家采纳,获得10
2秒前
2秒前
AN应助科研通管家采纳,获得10
2秒前
2秒前
控制小弟应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
自由寻梅发布了新的文献求助30
3秒前
冰西瓜最棒_完成签到,获得积分10
3秒前
古怪小枫完成签到,获得积分10
4秒前
TiAmo完成签到 ,获得积分10
4秒前
康佳璐发布了新的文献求助10
5秒前
5秒前
Camellia完成签到 ,获得积分10
6秒前
6秒前
搜集达人应助佰斯特威采纳,获得30
6秒前
QXS完成签到 ,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672