Fast inference of spinal neuromodulation for motor control using amortized neural networks

计算机科学 人工神经网络 神经调节 推论 一般化 电动机控制 脊髓损伤 功能性电刺激 腰骶关节 机器学习 人工智能 脊髓 神经科学 数学 刺激 数学分析 生物
作者
Lakshmi Narasimhan Govindarajan,Jonathan S. Calvert,Samuel R. Parker,Minju Jung,Radu Darie,Priyanka Miranda,Elias Shaaya,David A. Borton,T. Serre
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (5): 056037-056037 被引量:5
标识
DOI:10.1088/1741-2552/ac9646
摘要

Objective.Epidural electrical stimulation (EES) has emerged as an approach to restore motor function following spinal cord injury (SCI). However, identifying optimal EES parameters presents a significant challenge due to the complex and stochastic nature of muscle control and the combinatorial explosion of possible parameter configurations. Here, we describe a machine-learning approach that leverages modern deep neural networks to learn bidirectional mappings between the space of permissible EES parameters and target motor outputs.Approach.We collected data from four sheep implanted with two 24-contact EES electrode arrays on the lumbosacral spinal cord. Muscle activity was recorded from four bilateral hindlimb electromyography (EMG) sensors. We introduce a general learning framework to identify EES parameters capable of generating desired patterns of EMG activity. Specifically, we first amortize spinal sensorimotor computations in a forward neural network model that learns to predict motor outputs based on EES parameters. Then, we employ a second neural network as an inverse model, which reuses the amortized knowledge learned by the forward model to guide the selection of EES parameters.Main results.We found that neural networks can functionally approximate spinal sensorimotor computations by accurately predicting EMG outputs based on EES parameters. The generalization capability of the forward model critically benefited our inverse model. We successfully identified novel EES parameters, in under 20 min, capable of producing desired target EMG recruitment duringin vivotesting. Furthermore, we discovered potential functional redundancies within the spinal sensorimotor networks by identifying unique EES parameters that result in similar motor outcomes. Together, these results suggest that our framework is well-suited to probe spinal circuitry and control muscle recruitment in a completely data-driven manner.Significance.We successfully identify novel EES parameters within minutes, capable of producing desired EMG recruitment. Our approach is data-driven, subject-agnostic, automated, and orders of magnitude faster than manual approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luobing完成签到,获得积分10
刚刚
1秒前
hadern发布了新的文献求助10
1秒前
2秒前
汤锐完成签到,获得积分10
2秒前
3秒前
3秒前
fsylld233完成签到,获得积分10
3秒前
饱满绮玉W完成签到,获得积分20
3秒前
4秒前
4秒前
胡图图完成签到,获得积分10
5秒前
5秒前
明亮的映天完成签到,获得积分10
5秒前
高兴的幻竹完成签到,获得积分10
6秒前
悠悠完成签到,获得积分10
7秒前
kk发布了新的文献求助10
7秒前
脑洞疼应助hadern采纳,获得10
7秒前
熊玉然发布了新的文献求助10
8秒前
饱满绮玉W发布了新的文献求助10
9秒前
鲤鱼初柳发布了新的文献求助10
10秒前
11秒前
12秒前
kuiuLinvk完成签到,获得积分10
13秒前
华仔应助北川采纳,获得10
13秒前
13秒前
Orange应助echo采纳,获得10
14秒前
马明旋发布了新的文献求助10
16秒前
17秒前
faefasfae发布了新的文献求助30
18秒前
俏皮的雨泽完成签到,获得积分10
18秒前
18秒前
熊猫文文发布了新的文献求助10
18秒前
21秒前
22秒前
Kishi完成签到,获得积分10
22秒前
三愿完成签到,获得积分10
22秒前
Clover04发布了新的文献求助30
22秒前
小芳儿发布了新的文献求助10
25秒前
25秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919