Catch bond-inspired hydrogels with repeatable and loading rate-sensitive specific adhesion

自愈水凝胶 胶粘剂 材料科学 粘附 韧性 氢键 复合材料 单宁酸 纳米技术 化学工程 高分子化学 图层(电子) 化学 分子 有机化学 工程类
作者
Zuoying Yuan,Xiaocen Duan,Xing Su,Zhuoling Tian,Anqi Jiang,Zhuo Wan,Hao Wang,Pengfei Wei,Bo Zhao,Xiaozhi Liu,Jianyong Huang
出处
期刊:Bioactive Materials [Elsevier]
卷期号:21: 566-575 被引量:11
标识
DOI:10.1016/j.bioactmat.2022.09.002
摘要

Biological receptor-ligand adhesion governed by mammalian cells involves a series of mechanochemical processes that can realize reversible, loading rate-dependent specific interfacial bonding, and even exhibit a counterintuitive behavior called catch bonds that tend to have much longer lifetimes when larger pulling forces are applied. Inspired by these catch bonds, we designed a hydrogen bonding-meditated hydrogel made from acrylic acid-N-acryloyl glycinamide (AA-NAGA) copolymers and tannic acids (TA), which formed repeatable specific adhesion to polar surfaces in an ultra-fast and robust way, but hardly adhered to nonpolar materials. It demonstrated up to five-fold increase in shear adhesive strength and interfacial adhesive toughness with external loading rates varying from 5 to 500 mm min-1. With a mechanochemical coupling model based on Monte Carlo simulations, we quantitatively revealed the nonlinear dependence of rate-sensitive interfacial adhesion on external loading, which was in good agreement with the experimental data. Likewise, the developed hydrogels were biocompatible, possessed antioxidant and antibacterial properties and promoted wound healing. This work not only reports a stimuli-responsive hydrogel adhesive suitable for multiple biomedical applications, but also offers an innovative strategy for bionic designs of smart hydrogels with loading rate-sensitive specific adhesion for various emerging areas including flexible electronics and soft robotics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失似发布了新的文献求助10
1秒前
小蘑菇应助swordlee采纳,获得10
1秒前
白天完成签到,获得积分20
2秒前
孙阳阳完成签到 ,获得积分10
3秒前
豆豆完成签到,获得积分10
3秒前
3秒前
3秒前
Ava应助努力的学采纳,获得10
4秒前
oracl完成签到,获得积分10
5秒前
5秒前
6秒前
Lin完成签到,获得积分10
7秒前
机智寻雪完成签到,获得积分10
7秒前
7秒前
Felix发布了新的文献求助10
7秒前
tesla发布了新的文献求助10
7秒前
小杨完成签到,获得积分10
7秒前
哈欠发布了新的文献求助10
7秒前
8秒前
ATREE完成签到,获得积分10
8秒前
许win完成签到,获得积分10
8秒前
小白白完成签到,获得积分10
9秒前
QJL完成签到,获得积分10
9秒前
李健的小迷弟应助qq采纳,获得10
9秒前
龅牙苏发布了新的文献求助10
9秒前
韩夏菲完成签到,获得积分10
10秒前
Lin发布了新的文献求助10
11秒前
CipherSage应助多笑采纳,获得10
12秒前
12秒前
Akim应助科研小白采纳,获得10
13秒前
13秒前
13秒前
简单的梦槐完成签到,获得积分10
14秒前
居崽完成签到 ,获得积分10
14秒前
14秒前
zzzcxxx完成签到,获得积分10
16秒前
xushuojie发布了新的文献求助10
16秒前
16秒前
Ren完成签到,获得积分10
16秒前
小二郎应助NCU-Xzzzz采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552578
求助须知:如何正确求助?哪些是违规求助? 3128653
关于积分的说明 9379124
捐赠科研通 2827818
什么是DOI,文献DOI怎么找? 1554720
邀请新用户注册赠送积分活动 725544
科研通“疑难数据库(出版商)”最低求助积分说明 715000