Unsupervised feature extraction with autoencoders for EEG based multiclass motor imagery BCI

脑电图 脑-机接口 计算机科学 自编码 人工智能 运动表象 模式识别(心理学) 特征提取 支持向量机 自回归模型 语音识别 人工神经网络 数学 统计 心理学 精神科
作者
Souvik Phadikar,Nidul Sinha,Rajdeep Ghosh
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 118901-118901 被引量:3
标识
DOI:10.1016/j.eswa.2022.118901
摘要

Decoding of motor imagery (MI) from Electroencephalogram (EEG) is an important component of the Brain-Computer Interface (BCI) system that helps motor-disabled people interact with the outside world via external devices. The main issue in developing the EEG based BCI is the informative confusion due to the non-stationary characteristics of EEG data. In this work, an innovative idea of transforming an EEG signal into the weight vector of an unsupervised neural network called the autoencoder is proposed for the first time to solve that problem. Separate autoencoders are trained for the individual EEG data. The weight vectors are then optimized for the individual EEG signals. The EEG signals are thus represented in a new domain that is in the form of weight vectors of the individual autoencoder. The weight vectors are then used to extract features such as autoregressive coefficients (ARs), Shannon entropy (SE), and wavelet leader. A window-based feature extraction technique is implemented to capture the local features of the EEG data. Finally, extracted features are classified using a classifier network. The proposed approach is tested on two publicly accessible EEG datasets (BCI competition-III and Competition-IV) to ensure that it is as successful as and superior to the previously published methods. The proposed technique achieves a mean accuracy of 95.33 % for dataset-IIIa from BCI-III and a mean accuracy of 97% for dataset-IIa from BCI-IV for four-class EEG-based MI classification. The experimental outcomes show that the proposed approach is a promising way to increase BCI performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
mary完成签到,获得积分10
1秒前
1秒前
祭礼之龙发布了新的文献求助10
1秒前
云儿发布了新的文献求助10
2秒前
852应助jzyy采纳,获得10
2秒前
2秒前
万能图书馆应助菜菜采纳,获得10
2秒前
2秒前
3秒前
Phoenix发布了新的文献求助10
3秒前
3秒前
jzj完成签到 ,获得积分10
3秒前
not完成签到,获得积分10
5秒前
MIAOMIAO发布了新的文献求助10
5秒前
坐雨赏花发布了新的文献求助10
5秒前
李沛书发布了新的文献求助10
6秒前
归尘发布了新的文献求助10
6秒前
zzz发布了新的文献求助10
6秒前
满鑫发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
bancheng完成签到,获得积分10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
LL发布了新的文献求助30
8秒前
9秒前
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
9秒前
SciGPT应助qiu采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
9秒前
爆米花应助科研通管家采纳,获得30
9秒前
auf发布了新的文献求助10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
kong应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955094
求助须知:如何正确求助?哪些是违规求助? 3501442
关于积分的说明 11102825
捐赠科研通 3231691
什么是DOI,文献DOI怎么找? 1786550
邀请新用户注册赠送积分活动 870142
科研通“疑难数据库(出版商)”最低求助积分说明 801813