Prediction of asphaltene adsorption capacity of clay minerals using machine learning

吸附 支持向量机 弗伦德利希方程 粘土矿物 朗缪尔 沥青质 均方误差 计算机科学 机器学习 材料科学 人工智能 矿物学 化学 数学 统计 有机化学
作者
Mehdi Ghasemi,Afshin Tatar,Ali Shafiei,Oleksandr P. Ivakhnenko
出处
期刊:Canadian Journal of Chemical Engineering [Wiley]
卷期号:101 (5): 2579-2597 被引量:5
标识
DOI:10.1002/cjce.24675
摘要

Abstract A thorough understanding of asphaltene adsorption on clay minerals is particularly important in oil production and contaminated soil remediation using clay‐based adsorbents. In this paper, we introduced a machine learning approach as a reliable alternative for commonly used adsorption isotherms that suffer from inherent limitations in the prediction of asphaltene adsorption onto clay minerals. Machine learning (ML) models, namely multilayer perceptron (MLP), support vector machine (SVM), decision tree (DT), random forest (RF), and committee machine intelligent system (CMIS) combined with two optimizers were used. Experimental data (142 data points for six different clay minerals) was used for the modelling. To improve the accuracy of the smart models, a comprehensive data preparation such as outlier removal and feature selection was carried out. The results showed that relatively all the proposed models predict asphaltene adsorption on clay minerals with acceptable precision. Nevertheless, the MLP model showed superior performance compared with other models in which the overall root mean square error (RMSE) and coefficient of determination ( R 2 ) values of 6.72 and 0.93 were obtained, respectively. Finally, the developed MLP model was compared with the well‐known adsorption isotherms of Langmuir and Freundlich and exhibited superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun发布了新的文献求助10
1秒前
3秒前
3秒前
6秒前
cc发布了新的文献求助10
7秒前
斯文败类应助澜聴采纳,获得10
8秒前
8秒前
情怀应助ll采纳,获得10
12秒前
不钓鱼发布了新的文献求助10
13秒前
16秒前
Duke_ethan完成签到,获得积分10
17秒前
18秒前
老老实实好好活着完成签到,获得积分10
18秒前
21秒前
bkagyin应助森77采纳,获得10
21秒前
1412关注了科研通微信公众号
21秒前
22秒前
娜娜发布了新的文献求助10
22秒前
Upupupiu发布了新的文献求助50
24秒前
28秒前
29秒前
JamesPei应助柒柒球采纳,获得10
31秒前
顺利的钢笔完成签到,获得积分10
33秒前
Rui完成签到 ,获得积分10
33秒前
xx发布了新的文献求助10
33秒前
欣欣每天开开心心完成签到 ,获得积分10
33秒前
谢佳霖发布了新的文献求助10
35秒前
35秒前
35秒前
Junlin完成签到,获得积分10
37秒前
37秒前
大模型应助娜娜采纳,获得10
38秒前
39秒前
sun完成签到,获得积分20
40秒前
wzx完成签到,获得积分10
41秒前
无误发布了新的文献求助30
41秒前
Moonboss发布了新的文献求助10
41秒前
42秒前
pumpkin发布了新的文献求助10
43秒前
失眠的广山完成签到 ,获得积分10
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998925
求助须知:如何正确求助?哪些是违规求助? 3538424
关于积分的说明 11274205
捐赠科研通 3277345
什么是DOI,文献DOI怎么找? 1807518
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075