Applying the structural causal model framework for observational causal inference in ecology

生态学 因果推理 观察研究 有向无环图 因果模型 因果结构 混淆 因果关系(物理学) 统计推断 推论 因果关系 结果(博弈论) 生物 计量经济学 计算机科学 算法 认识论 数学 人工智能 数理经济学 统计 哲学 物理 量子力学
作者
Suchinta Arif,M. Aaron MacNeil
出处
期刊:Ecological Monographs [Wiley]
卷期号:93 (1) 被引量:67
标识
DOI:10.1002/ecm.1554
摘要

Abstract Ecologists are often interested in answering causal questions from observational data but generally lack the training to appropriately infer causation. When applying statistical analysis (e.g., generalized linear model) on observational data, common statistical adjustments can often lead to biased estimates between variables of interest due to processes such as confounding, overcontrol, and collider bias. To overcome these limitations, we present an overview of structural causal modeling (SCM), an emerging causal inference framework that can be used to determine cause‐and‐effect relationships from observational data. The SCM framework uses directed acyclic graphs (DAGs) to visualize researchers' assumptions about the causal structure of a system or process under study. Following this, a DAG‐based graphical rule known as the backdoor criterion can be applied to determine statistical adjustments (or lack thereof) required to determine causal relationships from observational data. In the presence of unobserved confounding variables, an additional rule called the frontdoor criterion can be employed to determine causal effects. Here, we use simulated ecological examples to review how the backdoor and frontdoor criteria can return accurate causal estimates between variables of interest, as well as how biases can arise when these criteria are not used. We further provide an overview of studies that have applied the SCM framework in ecology. SCM, along with its application of DAGs, has been widely used in other disciplines to make valid causal inferences from observational data. Their use in ecology holds tremendous potential for quantifying causal relationships and investigating a range of ecological questions without randomized experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋的灯完成签到 ,获得积分10
1秒前
666完成签到 ,获得积分10
1秒前
大Doctor陈发布了新的文献求助10
3秒前
中科路2020完成签到,获得积分10
4秒前
5秒前
ange完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
why完成签到,获得积分10
7秒前
7秒前
11秒前
洁净斑马发布了新的文献求助10
12秒前
菲菲完成签到 ,获得积分10
12秒前
偶吼吼完成签到,获得积分10
12秒前
Xu_W卜完成签到,获得积分10
12秒前
斯文钢笔完成签到 ,获得积分10
13秒前
敏敏完成签到 ,获得积分10
14秒前
ha完成签到 ,获得积分10
14秒前
畅快代亦完成签到,获得积分10
15秒前
15秒前
evilbatuu完成签到,获得积分10
16秒前
等待的代容完成签到,获得积分10
17秒前
丰富的大地完成签到,获得积分10
19秒前
中华牌老阿姨完成签到,获得积分0
20秒前
大Doctor陈发布了新的文献求助10
21秒前
劳达完成签到,获得积分10
22秒前
自然秋柳完成签到 ,获得积分10
22秒前
shinen完成签到,获得积分10
23秒前
poplar完成签到,获得积分10
24秒前
短巷完成签到 ,获得积分10
25秒前
忧伤的二锅头完成签到 ,获得积分10
25秒前
研友_ZzrWKZ完成签到 ,获得积分10
27秒前
狼来了aas完成签到,获得积分10
27秒前
大Doctor陈发布了新的文献求助10
28秒前
dlut0407完成签到,获得积分0
28秒前
鸢尾完成签到,获得积分10
29秒前
111111完成签到,获得积分10
30秒前
晚星完成签到,获得积分10
31秒前
kourosz完成签到,获得积分10
32秒前
细心的代天完成签到 ,获得积分10
36秒前
王十二完成签到 ,获得积分10
37秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015