Applying the structural causal model framework for observational causal inference in ecology

生态学 因果推理 观察研究 有向无环图 因果模型 因果结构 混淆 因果关系(物理学) 统计推断 推论 因果关系 结果(博弈论) 生物 计量经济学 计算机科学 算法 认识论 数学 人工智能 数理经济学 统计 物理 量子力学 哲学
作者
Suchinta Arif,M. Aaron MacNeil
出处
期刊:Ecological Monographs [Wiley]
卷期号:93 (1) 被引量:18
标识
DOI:10.1002/ecm.1554
摘要

Abstract Ecologists are often interested in answering causal questions from observational data but generally lack the training to appropriately infer causation. When applying statistical analysis (e.g., generalized linear model) on observational data, common statistical adjustments can often lead to biased estimates between variables of interest due to processes such as confounding, overcontrol, and collider bias. To overcome these limitations, we present an overview of structural causal modeling (SCM), an emerging causal inference framework that can be used to determine cause‐and‐effect relationships from observational data. The SCM framework uses directed acyclic graphs (DAGs) to visualize researchers' assumptions about the causal structure of a system or process under study. Following this, a DAG‐based graphical rule known as the backdoor criterion can be applied to determine statistical adjustments (or lack thereof) required to determine causal relationships from observational data. In the presence of unobserved confounding variables, an additional rule called the frontdoor criterion can be employed to determine causal effects. Here, we use simulated ecological examples to review how the backdoor and frontdoor criteria can return accurate causal estimates between variables of interest, as well as how biases can arise when these criteria are not used. We further provide an overview of studies that have applied the SCM framework in ecology. SCM, along with its application of DAGs, has been widely used in other disciplines to make valid causal inferences from observational data. Their use in ecology holds tremendous potential for quantifying causal relationships and investigating a range of ecological questions without randomized experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜晓绿发布了新的文献求助10
1秒前
1秒前
Bruce发布了新的文献求助10
1秒前
2秒前
2秒前
MYhang完成签到,获得积分10
2秒前
wxd发布了新的文献求助10
4秒前
4秒前
哈哈发布了新的文献求助10
5秒前
5秒前
西哈哈发布了新的文献求助10
5秒前
科研通AI5应助lili采纳,获得10
5秒前
郑嘻嘻完成签到,获得积分10
5秒前
5秒前
FEI完成签到,获得积分20
5秒前
7秒前
英姑应助顺利的乐枫采纳,获得10
7秒前
7秒前
7秒前
8秒前
木子加y完成签到 ,获得积分10
9秒前
小蘑菇应助Sally采纳,获得10
9秒前
命运的X号完成签到,获得积分10
9秒前
yangyong发布了新的文献求助10
10秒前
10秒前
图图烤肉完成签到,获得积分10
11秒前
ajiaxi完成签到,获得积分10
11秒前
Bruce完成签到,获得积分10
12秒前
英俊的水彤完成签到 ,获得积分10
12秒前
刘金金完成签到,获得积分10
13秒前
13秒前
命运的X号发布了新的文献求助10
13秒前
14秒前
HJJHJH发布了新的文献求助10
14秒前
14秒前
爱听歌的电源完成签到,获得积分10
14秒前
善学以致用应助新的心跳采纳,获得10
14秒前
15秒前
陈梦雨发布了新的文献求助10
16秒前
复杂瑛完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794