Applying the structural causal model framework for observational causal inference in ecology

生态学 因果推理 观察研究 有向无环图 因果模型 因果结构 混淆 因果关系(物理学) 统计推断 推论 因果关系 结果(博弈论) 生物 计量经济学 计算机科学 算法 认识论 数学 人工智能 数理经济学 统计 哲学 物理 量子力学
作者
Suchinta Arif,M. Aaron MacNeil
出处
期刊:Ecological Monographs [Wiley]
卷期号:93 (1) 被引量:18
标识
DOI:10.1002/ecm.1554
摘要

Abstract Ecologists are often interested in answering causal questions from observational data but generally lack the training to appropriately infer causation. When applying statistical analysis (e.g., generalized linear model) on observational data, common statistical adjustments can often lead to biased estimates between variables of interest due to processes such as confounding, overcontrol, and collider bias. To overcome these limitations, we present an overview of structural causal modeling (SCM), an emerging causal inference framework that can be used to determine cause‐and‐effect relationships from observational data. The SCM framework uses directed acyclic graphs (DAGs) to visualize researchers' assumptions about the causal structure of a system or process under study. Following this, a DAG‐based graphical rule known as the backdoor criterion can be applied to determine statistical adjustments (or lack thereof) required to determine causal relationships from observational data. In the presence of unobserved confounding variables, an additional rule called the frontdoor criterion can be employed to determine causal effects. Here, we use simulated ecological examples to review how the backdoor and frontdoor criteria can return accurate causal estimates between variables of interest, as well as how biases can arise when these criteria are not used. We further provide an overview of studies that have applied the SCM framework in ecology. SCM, along with its application of DAGs, has been widely used in other disciplines to make valid causal inferences from observational data. Their use in ecology holds tremendous potential for quantifying causal relationships and investigating a range of ecological questions without randomized experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
日出东方小磊哥完成签到 ,获得积分10
2秒前
随波逐流发布了新的文献求助10
3秒前
李健的小迷弟应助小田采纳,获得10
3秒前
3秒前
慧喆完成签到 ,获得积分10
3秒前
3秒前
英姑应助miraitowa采纳,获得30
4秒前
子车定帮完成签到,获得积分10
5秒前
小宝完成签到,获得积分10
6秒前
Twistti发布了新的文献求助10
7秒前
沙脑完成签到 ,获得积分10
7秒前
7秒前
present发布了新的文献求助10
7秒前
无辜凝天完成签到,获得积分10
10秒前
10秒前
满天星完成签到,获得积分10
13秒前
lirongcas发布了新的文献求助10
14秒前
小橘完成签到,获得积分10
14秒前
15秒前
所所应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
杳鸢应助科研通管家采纳,获得30
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
杳鸢应助科研通管家采纳,获得30
16秒前
呵呵完成签到,获得积分10
16秒前
钮以南发布了新的文献求助30
17秒前
鹏826发布了新的文献求助10
18秒前
18秒前
20秒前
万能图书馆应助sunny采纳,获得10
21秒前
热情的凝云完成签到,获得积分10
21秒前
22秒前
上上谦发布了新的文献求助10
23秒前
怀歌发布了新的文献求助10
24秒前
25秒前
罗伊黄完成签到 ,获得积分10
26秒前
kk完成签到,获得积分10
27秒前
27秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299938
求助须知:如何正确求助?哪些是违规求助? 2934780
关于积分的说明 8470445
捐赠科研通 2608342
什么是DOI,文献DOI怎么找? 1424154
科研通“疑难数据库(出版商)”最低求助积分说明 661873
邀请新用户注册赠送积分活动 645601