拉曼光谱
氢氧化锂
锂(药物)
化学
同位素位移
分析化学(期刊)
碳酸锂
碳酸盐
氢氧化物
动力学同位素效应
锂同位素
同位素
稳定同位素比值
无机化学
氘
离子
光学
有机化学
医学
物理
量子力学
离子交换
离子键合
内分泌学
作者
Willis B. Jones,Jason R. Darvin,Patrick O'Rourke,Kimberly Alicia Strange Fessler
标识
DOI:10.1177/00037028221131039
摘要
Lithium isotopic ratios have wide ranging applications as chemical signatures, including improved understanding of geochemical processes and battery development. Measurement of isotope ratios using optical spectroscopies would provide an alternative to traditional mass spectrometric methods, which are expensive and often limited to a chemical laboratory. Raman spectra of 7 Li 2 CO 3 , 6 Li 2 CO 3 , 7 LiOH*H 2 O, and 6 LiOH*H 2 O have been measured to determine the effect of lithium isotope substitution on the Raman molecular vibrations. Thirteen peaks were observed in the spectrum of lithium carbonate, with discernable isotopic shifts occurring in eleven of the 13 vibrations, two of which have not been previously reported in the literature. The spectrum of lithium hydroxide monohydrate contained nine peaks, with discernable isotopic shifts occurring in eight of the nine vibrations, four of which have not been previously reported in the literature. The Raman spectral data reported here for lithium carbonate and lithium hydroxide monohydrate are in agreement with the previously reported works in the literature, in which the Raman active modes of these molecules were first identified and assigned. However, due to the stability and resolution of the detection system used in this work, isotopic shifts with a magnitude less than one wavenumber have been identified. Principal component regression was used to evaluate the sensitivity to isotopic content of small Raman peak shifts in Li 2 CO 3 and indicates differences greater than 2 atom% could be reliably determined. These measurements add to the body of work on lithium isotope Raman spectroscopy for these two compounds and increases the number of Raman bands which could be used for lithium isotope content analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI