Multi-task thyroid tumor segmentation based on the joint loss function

分割 计算机科学 人工智能 图像分割 Sørensen–骰子系数 模式识别(心理学) 特征(语言学) 任务(项目管理) 尺度空间分割 计算机视觉 语言学 哲学 经济 管理
作者
Dedong Yang,Yangyang Li,Jiankang Yu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104249-104249 被引量:9
标识
DOI:10.1016/j.bspc.2022.104249
摘要

Medical image segmentation is one of the important topics in the field of medical image, which has attracted the great attention of researchers in recent years. However, there are few studies on the segmentation methods of thyroid tumors, which are determined by the characteristics of the thyroid and the mode of B-mode ultrasound imaging. Therefore, the segmentation of B-mode ultrasound images of thyroid tumors and the study of benign and malignant classification technology have important value and significance. In this paper, we propose a multi-task segmentation framework based on the joint loss function. First, based on our previous work, Feature Fusion Attention Network to Medical Image Segmentation (FFANet), we add a classification branch to expand it into a multi-task image segmentation framework. Then, we design the corresponding joint loss function and explore the weight coefficients between the two loss functions in the segmentation and classification tasks. Finally, through the experiment on thyroid tumor segmentation and classification dataset, the dice coefficient of the multi-task framework proposed in this paper is 0.935, and the classification accuracy is 0.790. It achieves competitive performance compared to existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
坚果完成签到,获得积分10
1秒前
Lmy发布了新的文献求助10
1秒前
sk发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
华仔应助180198采纳,获得30
3秒前
hongjing发布了新的文献求助10
3秒前
3秒前
肃肃其羽完成签到 ,获得积分10
3秒前
3秒前
3秒前
SciGPT应助米卡采纳,获得10
3秒前
根瘤君发布了新的文献求助10
4秒前
4秒前
优雅山柏发布了新的文献求助10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
小青椒应助科研通管家采纳,获得30
4秒前
浮游应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
脑洞疼应助zyro采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
小小何完成签到,获得积分10
5秒前
Lucas应助科研通管家采纳,获得100
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
大模型应助dagongren采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526107
求助须知:如何正确求助?哪些是违规求助? 4616283
关于积分的说明 14552778
捐赠科研通 4554503
什么是DOI,文献DOI怎么找? 2495919
邀请新用户注册赠送积分活动 1476266
关于科研通互助平台的介绍 1447928